Tag Archives: Cortex-M7

Are you designing for the latest automotive embedded system?


Eventually, self-driving cars will arrive. But until then, here’s a look at what will drive that progression.


The next arrow of development is set for automotive

We all have seen it. We all have read about it in your front-center technology news outlets. The next forefront for technology will take place in the vehicle. The growing market fitted with the feature deviation trend does not appeal to the vision of customizing more traditional un-connected, oiled and commonly leveraged chassis vehicles of today. Instead, ubiquity in smartphones have curved a design trend, now mature while making way for the connected car platform. The awaiting junction is here for more integration of the automotive software stack.  Opportunities for the connected car market are huge, but multiple challenges still exist. Life-cycles in the development of automotive and the mobile industry are a serious barrier for the future of connected cars. Simply, vehicles take much longer to develop than smartphones other portable gadgetry. More integration from vendors and suppliers are involved with the expertise to seamlessly fit the intended blueprint of the design. In fact, new features such as the operating system are becoming more prevalent, while the demand for sophisticated and centrally operated embedded systems are taking the height of the evolution. This means more dependence on integration of data from various channels, actuators, and sensors — the faculty to operate all the new uses cases such as automatic emergency response systems are functionality requiring more SoC embedded system requirements.

A step toward the connected car - ecall and how it works

What is happening now?

People. Process. Governance. Adoption. Let’s look at the similarities stemmed from change. We are going to witness new safety laws and revised regulations coming through the industry. These new laws will dictate the demand for connectivity. Indeed, drawing importance this 2015 year with the requirement set by 2018, European Parliament voted in favor of eCall regulation. Cars in Europe must be equipped with eCall, a system that automatically contacts emergency services directing them to the vehicle location in the event of an emergency. The automotive and mobile industries have different regional and market objectives. Together, all the participants in both market segments will need to find ways to collaborate in order to satisfy consumer connectivity needs. Case in point, Chrysler has partnered with Nextel to successfully connect cars like their Dodge Viper, while General Motors uses AT&T as its mobile development partner.

General Motors selected AT&T as its mobile partner

What is resonating from the sales floor and customer perspective?

The demand is increasing for more sophistication and integration of software in the cabin of cars. This is happening from the manufacturer to the supplier network then to the integration partners — all are becoming more engaged to achieve the single outcome, pacing toward the movement to the connected car. Stretched as far as the actual retail outlets, auto dealers are shifting their practice to be more tech savvy, too. The advent of the smart  vehicle has already dramatically changed the dealership model, while more transformation awaits the consumer.

On the sales floor as well as the on-boarding experience, sales reps must plan to spend an hour or more teaching customers how to use their car’s advanced technology. But still, these are only a few mentioned scenarios where things have changed in relation to cars and how they are sold and even to the point of how they are distributed, owned, and serviced. One thing for certain, though, is that the design and user trend are intersecting to help shape the demand and experience a driver wants in the connected car. This is further bolstered by the fast paced evolution of smartphones and the marketing experiences now brought forth by the rapid adoption and prolific expansion of the mobile industry tethered by their very seamless and highly evolved experiences drawn from their preferred apps.

Today, customer experiences are becoming more tailored while users, albeit on the screen or engaged with their mobile devices are getting highly acquainted with the expectation of “picking up from where I left off” regardless of what channel, medium, device, or platform.  Seamless experiences are breaking through the market.  We witness Uber, where users initialize their click on their smartphone then follows by telemetry promoted from Uber drivers and back to the users smart phone.  In fact, this happens vis versa, Uber driver’s have information on their console showing customer location and order of priority.  Real life interactions are being further enhanced by real-time data, connecting one device to draw forth another platform to continue the journey.  Transportation is one of the areas where we can see real-time solutions changing our day-to-day engagement.  Some of these are being brought forth by Atmel’s IoT cloud partners such as PubNub where they leverage their stack in devices to offer dispatch, vehicle state, and geo fencing for many vehicle platforms.  Companies like Lixar, LoadSmart, GetTaxi, Sidecar, Uber, Lyft are using real-time technologies as integral workings to their integrated vehicle platforms.

The design trajectory for connected cars continues to follow this arrow forward

Cars are becoming more of a software platform where value chain add-ons tied to an ecosystem are enabled within the software tethered by the cloud where data will continue to enhance the experience. The design trajectory for connected cars follow this software integration arrow.  Today, the demand emphasizes mobility along with required connectivity to customer services and advanced functions like power management for electric vehicles, where firmware/software updates further produce refined outcomes in the driver experience (range of car, battery management, other driver assisted functionalities).

Carmakers and mobile operators are debating the best way to connect the car to the web. Built-in options could provide stronger connections, but some consumers prefer tethering their existing smartphone to the car via Bluetooth or USB cable so they can have full access to their personal contacts and playlists. Connected car services will eventually make its way to the broader car market where embedded connections and embedded systems supporting these connections will begin to leverage various needs to integrate traditional desperate signals into a more centrally managed console.

Proliferation of the stack

The arrow of design for connected cars will demand more development, bolstering the concept that software and embedded systems factored with newly-introduced actuators and sensors will become more prevalent. We’re talking about “software on wheels,” “SoC on wheels,” and “secured mobility.”

Design wise, the cost-effective trend will still remain with performance embedded systems. Many new cars may have extremely broad range of sensor and actuator‑based IoT designs which can be implemented on a single compact certified wireless module.

The arrow for connected cars will demand more development bolstering the concept that software and embedded systems factored with newly introduced actuators & sensors will become more prevalent; “software on wheels”, “SoC on wheels” and “secured mobility”.

Similarly, having fastest startup times by performing the task with a high-performance MCU vs MPU, is economic for a designer. It can not only reduce significant bill of materials cost, development resources, sculpted form factor, custom wireless design capabilities, but also minimize the board footprint. Aside from that, ARM has various IoT device development options, offering partner ecosystems with modules that have open standards. This ensures ease of IoT or connected car connectivity by having type approval certification through restrictive access to the communications stacks.

Drivers will be prompted with new end user applications — demand more deterministic code and processing with chips that support the secure memory capacity to build and house the software stack in these connected car applications.

Feature upon feature, layer upon layer of software combined with characteristics drawn from the events committed by drivers, tires, wheels, steering, location, telemetry, etc. Adapted speed and braking technologies are emerging now into various connected car makes, taking the traditional ABS concept to even higher levels combined with intelligence, along with controlled steering and better GPS systems, which will soon enable interim or cruise hands-free driving and parking.

Connected Car Evolution

Longer term, the technological advances behind the connected car will eventually lead to self-driving vehicles, but that very disruptive concept is still far out.

Where lies innovation and change is disruption

Like every eventual market disruption, there will be the in-between development of this connected car evolution. Innovative apps are everywhere, especially the paradigm where consumers have adopted to the seamless transitional experiences offered by apps and smartphones. Our need for ubiquitous connectivity and mobility, no matter where we are physically, is changing our vehicles into mobile platforms that want us users to seamlessly be connected to the world. This said demand for connectivity increases with the cost and devices involved will become more available. Cars as well as other mobility platforms are increasingly becoming connected packages with intelligent embedded systems. Cars are offering more than just entertainment — beyond providing richer multimedia features and in-car Internet access.  Further integration of secure and trusted vital data and connectivity points (hardware security/processing, crypto memory, and crypto authentication) can enable innovative navigation, safety and predictive maintenance capabilities.

Carmakers are worried about recent hacks,  especially with issues of security and reliability, making it unlikely that they will be open to every kind of app.  They’ll want to maintain some manufactured control framework and secure intrusion thwarting with developers, while also limiting the number of apps available in the car managing what goes or conflicts with the experience and safety measures.  Importantly, we are taking notice even now. Disruption comes fast, and Apple and others have been mentioned to enter this connected car market. This is the new frontier for technological equity scaling and technology brand appeal. Much like what we seen in the earlier models of Blackberry to smartphones, those late in the developmental evolution of their platforms may be forced adrift or implode by the market.

No one is arguing it will happen. Eventually, self-driving cars will arrive.  But for now, it remains a futuristic concept.

What can we do now in the invention, design and development process?

The broader output of manufactured cars will need to continue in leveraging new designs that take in more integration of traditional siloed integration vendors so that the emergence of more unified and centrally managed embedded controls can make its way. Hence, the importance now exists in the DNA of a holistically designed platform fitted with portfolio of processors and security to take on new service models and applications.

This year, we have compiled an interesting mixture of technical articles to support the development and engineering of car access systems, CAN and LIN networks, Ethernet in the car, capacitive interfaces and capacitive proximity measurement.

In parallel to the support of helping map toward the progress and evolution of the connected car, a new era of design exists. One in which the  platform demands embedded controls to evenly match their design characteristics and application use cases. We want to also highlight the highest performing ARM Cortex-M7 based MCU in the market, combining exceptional memory and connectivity options for leading design flexibility. The Atmel | SMART ARM Cortex-M7 family is ideal for automotive, IoT and industrial connectivity markets. These SAM V/E/S family of microcontrollers are the industry’s highest performing Cortex-M microcontrollers enhancing performance, while keeping cost and power consumption in check.

So are you designing for the latest automotive, IoT, or industrial product? Here’s a few things to keep in mind:

  • Optimized for real-time deterministic code execution and low latency peripheral data access
  • Six-stage dual-issue pipeline delivering 1500 CoreMarks at 300MHz
  • Automotive-qualified ARM Cortex-M7 MCUs with Audio Video Bridging (AVB) over Ethernet and Media LB peripheral support (only device in the market today)
  • M7 provides 32-bit floating point DSP capability as well as faster execution times with greater clock speed, floating point and twice the DSP power of the M4

We are taking the connected car design to the next performance level — having high-speed connectivity, high-density on-chip memory, and a solid ecosystem of design engineering tools. Recently, Atmel’s Timothy Grai added a unveiling point to the DSP story in Cortex-M7 processor fabric. True DSPs don’t do control and logical functions well; they generally lack the breadth of peripherals available on MCUs. “The attraction of the M7 is that it does both — DSP functions and control functions — hence it can be classified as a digital signal controller (DSC).” Grai quoted the example of Atmel’s SAM V70 and SAM V71 microcontrollers are used to connect end-nodes like infotainment audio amplifiers to the emerging Ethernet AVB network. In an audio amplifier, you receive a specific audio format that has to be converted, filtered, and modulated to match the requirement for each specific speaker in the car. Ethernet and DSP capabilities are required at the same time.

“The the audio amplifier in infotainment applications is a good example of DSC; a mix of MCU capabilities and peripherals plus DSP capability for audio processing. Most of the time, the main processor does not integrate Ethernet AVB, as the infotainment connectivity is based on Ethernet standard,” Grai said. “Large SoCs, which usually don’t have Ethernet interface, have slow start-up time and high power requirements. Atmel’s SAM V7x MCUs allow fast network start-up and facilitate power moding.”

Atmel has innovative memory technology in its DNA — critical to help fuel connected car and IoT product designers. It allows them to run the multiple communication stacks for applications using the same MCU without adding external memory. Avoiding external memories reduces the PCB footprint, lowers the BOM cost and eliminates the complexity of high-speed PCB design when pushing the performance to a maximum.

Importantly, the Atmel | SMART ARM Cortex-M7 family achieves a 1500 CoreMark Score, delivering superior connectivity options and unique memory architecture that can accommodate the said evolve of the eventual “SoC on wheels” design path for the connected car.

How to get started

  1. Download this white paper detailing how to run more complex algorithms at higher speeds.
  2. Check out the Atmel Automotive Compilation.
  3. Attend hands-on training onboard the Atmel Tech on Tour trailer. Following these sessions, you will walk away with the Atmel | SMART SAM V71 Xplained Ultra Evaluation Kit.
  4. Design the newest wave of embedded systems using SAM E70, SAM S70, or SAM V70 (ideal for automotive, IoT, smart gateways, industrial automation and drone applications, while the auto-grade SAM V70 and SAM V71 are ideal for telematics, audio amplifiers and advanced media connectivity).

IMG_3659

[Images: European Commission, GSMA]

The world’s highest-performing Cortex-M7 MCUs are now shipping


Atmel | SMART ARM Cortex-M7-based MCUs deliver 50% more performance than the closest competitor.


Back in January, we unveiled the brand new Atmel | SMART SAM S70 and E70 families. And if you’ve been waiting to get your hands on the new ARM Cortex-M7-based MCUs, you’re in luck. That’s because both are now shipping in mass production.

Cortex_M7_1200x1200

With 50% higher performance than the closest competitor, larger configurable SRAM, more embedded Flash and high-bandwidth peripherals, these devices offer the ideal mix of connectivity, memory and performance. The SAM S70 and E70 series allow users to scale-up performance and deliver SRAM and system functionality, all while keeping the Cortex-M processor family ease-of-use and maximizing software reuse.

“As a lead partner for the ARM Cortex-M7-based MCUs, we are excited to ship volume units of our SAM E70 and S70 MCUs to worldwide customers,” explains Jacko Wilbrink, Atmel Senior Marketing Director. “Our SAM E70 and SAM S70 series deliver a robust memory and connectivity feature set, along with extensive software and third party support, enabling next-generation industrial, consumer and IoT designers the ability to differentiate their applications in a demanding market. We are working with hundreds of customers worldwide on a variety of applications using the new ARM Cortex-M7-based MCUs and look forward to mass adoption of these devices.”

SAM

These boards pack more than four times the performance of current Atmel | SMART ARM Cortex-M based MCUs. Running at speeds up to 300 MHz and embedding larger configurable SRAM up to 384 KB and higher bandwidth peripherals, the new series offer designers the right connectivity, SRAM and peripheral mix for industrial and connectivity designs. Additionally, the SAM S70 and E70 boast advanced memory architectures with up to 384KB of multi-port SRAM memory out of which 256KB can be configured as tightly coupled memory delivering zero wait state access at 300MHz. All devices come with high-speed USB Host and Device with on-chip high-speed USB PHY and Flash memory densities of 512kB, 1MB and 2MB.

What’s more, the Atmel | SMART ARM Cortex-M7-based MCUs are supported by ARM ecosystem partners on development tools and real-time operating system (RTOS) board support packages (BSPs) accelerating time-to-market. Software development tools are available on Atmel Studio, the ARM Keil MDK-ARM and IAR Embedded Workbench. Operating system support include Express Logic ThreadX, FreeRTOS, Keil RTX, NuttX and Segger embOS. A comprehensive set of peripheral driver examples and open source middleware is also provided in Atmel’s Software Package.

Cortex_M7_table

“Atmel has developed a global network of ecosystem partners that deliver hardware and software solutions for the Atmel SMART Cortex-M7 MCU,” adds Steve Pancoast, Atmel Vice President of Software Applications, Tools and Development. “Atmel’s robust, easy-to-use development platform along with our partners’ advanced development platforms offer developers the opportunity to use the best tools and services to bring their designs quickly to market. Atmel continues to expand our partner program to bring the best tools and solutions to our customers.”

Interested? Production quantities of both the SAM E70 and S70 are now available. In order to help accelerate design and to support these devices, an Atmel Xplained development kit is shipping today as well. Pricing for the SAM S70 starts at $5.34 in 64-pin LQFP package and 512KB on-chip flash for 10k-piece quantities while the Atmel Xplained board will run you $136.25. Meanwhile, be sure to read up on the new MCU families here.

3 design hooks of Atmel MCUs for connected cars


The MPU and MCU worlds are constantly converging and colliding, and the difference between them is not a mere on-off switch — it’s more of a sliding bar. 


In February 2015, BMW reported that it patched the security flaw which could allow hackers to remotely unlock the doors of more than 2 million BMW, Mini and Rolls-Royce vehicles. Earlier, researchers at ADAC, a German motorist association, had demonstrated how they could intercept communications with BMW’s ConnectedDrive telematics service and unlock the doors.

security-needs-for-connected-car-by-atmel

BMW uses SIM card installed in the car to connect to a smartphone app over the Internet. Here, the ADAC researchers created a fake mobile network and tricked nearby cars into taking commands by reverse engineering the BMW’s telematics software.

The BMW hacking episode was a rude awakening for the connected car movement. The fact that prominent features like advanced driver assistance systems (ADAS) are all about safety and security is also a testament is that secure connectivity will be a prime consideration for the Internet of Cars.

Built-in Security

Atmel is confident that it can establish secure connections for the vehicles by merging its security expertise with performance and low-power gains of ARM Cortex-M7 microcontrollers. The San Jose, California-based chip supplier claims to have launched the industry’s first auto-qualified M7-based MCUs with Ethernet AVB and media LB peripherals. In addition, this high-end MCU series for in-vehicle infotainment offers the CAN 2.0 and CAN flexible data rate controller for higher bandwidth requirements.

Nicolas Schieli, Automotive MCU Marketing Director at Atmel, acknowledges that security is something new in the automotive environment that needs to be tackled as cars become more connected. “Anything can connect to the controller area network (CAN) data links.”

Schieli notes that the Cotex-M7 has embedded enhanced security features within its architecture and scalability. On top of that, Atmel is using its years of expertise in Trusted Platform Modules and crypto memories to securely connect cars to the Internet, not to mention the on-chip SHA and AES crypto engines in SAM E70/V70/V71 microcontrollers for encryption of data streams. “These built-in security features accelerate authentication of both firmware and applications.”

Crypto

Schieli notes that the Cotex-M7 has embedded enhanced security features within its architecture and scalability. On top of that, Atmel is using its years of expertise in Trusted Platform Modules and crypto memories to securely connect cars to the Internet, not to mention the on-chip SHA and AES crypto engines in SAM E70/V70/V71 microcontrollers for encryption of data streams. “These built-in security features accelerate authentication of both firmware and applications.”

He explained how the access to the Flash, SRAM, core registers and internal peripherals is blocked to enable security. It’s done either through the SW-DP/JTAG-DP interface or the Fast Flash Programming Interface. The automotive-qualified SAM V70 and V71 microcontrollers support Ethernet AVB and Media LB standards, and they are targeted for in-vehicle infotainment connectivity, audio amplifiers, telematics and head control units companion devices.

Software Support

The second major advantage that Atmel boasts in the connected car environment is software expertise and an ecosystem to support infotainment applications. For instance, a complete automotive Ethernet Audio Video Bridging (AVB) stack is being ported to the SAM V71 microcontrollers.

Software support is a key leverage in highly fragmented markets like automotive electronics. Atmel’s software package encompasses peripheral drivers, open-source middleware and real-time operating system (RTOS) features. The middleware features include USB class drivers, Ethernet stacks, storage file systems and JPEG encoder and decoder.

Next, the company offers support for several RTOS platforms like RTX, embOS, Thread-X, FreeRTOS and NuttX. Atmel also facilitates the software porting of any proprietary or commercial RTOS and middleware. Moreover, the MCU supplier from San Jose features support for specific automotive software such as AUTOSAR and Ethernet AVB stacks.

Atmel supports IDEs such as IAR or ARM MDK and Atmel Studio and it provides a full-featured board that covers all MCU series, including E70, V70 and V71 devices. And, a single board can cover all Atmel microcontrollers. Moreover, the MCU supplier provides Board Support Package for Xplained evaluation kit and easy porting to customer boards through board definition file (board.h).

Beyond that, Atmel is packing more functionality and software features into its M7 microcontrollers. Take SAM V71 devices, for example, which have three software-selectable low-power modes: sleep, wait and backup. In sleep mode, the processor is stopped while all other functions can be kept running. While in wait mode, all clocks and functions are stopped but some peripherals can be configured to wake up the system based on predefined conditions. In backup mode, RTT, RTC and wake-up logic are running. Furthermore, the microcontroller can meet the most stringent key-off requirements while retaining 1Kbyte of SRAM and wake-up on CAN.

Transition from MPU to MCU

Cortex-M7 is pushing the microcontroller performance in the realm of microprocessors. MPUs, which boast memory management unit and can run operating systems like Linux, eventually lead to higher memory costs. “Automakers and systems integrators are increasingly challenged in getting performance point breakthrough because they are running out of Flash capacity,” explained Schieli.

On the other hand, automotive OEMs are trying to squeeze costs in order to bring the connected car riches to non-luxury vehicles, and here M7 microcontrollers can help bring down costs and improve the simplification of car connectivity.

The M7 microcontrollers enable automotive embedded systems without the requirement of a Linux head and can target applications with high performance while running RTOS or bare metal implementation. In other words, M7 opens up avenues for automotive OEMs if they want to make a transition from MPU to MCU for cost benefits.

However, the MPU and MCU worlds are constantly converging and colliding, and the difference between them is not a mere on-off switch. It’s more of a sliding bar. Atmel, having worked on both sides of the fence, can help hardware developers to manage that sliding bar well. “Atmel is using M7 architecture to help bridge the gap between microprocessors and high-end MCUs,” Schieli concludes.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

What is real SAM V71 DSP performance in automotive audio?


The integrated FPU DSP (into the Cortex-M7 core) is using 2X the number of clock cycles when compared with the SHARC21489.


Thinking of selecting an ARM Cortex-M7-based Atmel SAM V70/71 for your next automotive entertainment application? Three key reasons to consider are the clock speed of the the Cortex-M7 (300 Mhz), the integration of a floating point (FPU) DSP, and last but not least, because the SAM V70/71 has obtained automotive qualification. If you delve deeper into the SAM V70/71 features list, you will see that this MCU is divided into several versions integrating Flash: 512 KB, 1024 KB or 2018 KB. And, if you compare with the competition, this MCU is the only Cortex-M7 supporting the 2 MB Flash option, being automotive qualified and delivering 1500 CoreMark — thanks to the 300 MHz clock speed when the closest competitor only reach 240 MHz and deliver 1200 CoreMark.

SAMV71-Auto-Infotainment-System

In fact, what makes the SAMV70/71 so unique is its FPU DSP performance. Let’s make it clear for the beginning, if you search for pure DSP performance, it will be easy to find standard DSP chip offering much higher performance. Take the Analog Device AD21489 or Blackfin70x series, for example. However, the automotive market is not only very demanding, it’s also a very cost sensitive market as well.

Think about this simple calculation: If you select AD21489 DSP, you will have to add external flash and a MCU, which would lead the total BOM to be four to five times the price associated with the SAM V71. (Let’s also keep this AD21489 as a reference in terms of performance, and examine DSP benchmark results, coming from third party DSP experts DSP Concept.)

FIR Benchmark

Before analyzing the results, we need to describe the context:

  • FIR is made on 256 samples block size
  • Results are expressed in term of clock cycles (smaller is better)
  • All DSP are floating-point except Blackfin
  • Clock cycles count is measured using Audio Weaver

To elaborate upon that even further, this FIR is used to build equalization filter — the higher Taps count, the better. If we look at the “50 Taps” benchmark results, the SAM V71 (Cortex-M7 based) exhibits 22,734 clock cycles (about three times more than the SHARC21489). Unsurprisingly, the Cortex-M4 requires 50% more, but you have to integrate a Cortex-A15 to get better results, as both the Cortex-A8 and Cortex-A9 need 30% and 40% more cycles, respectively! And when looking at standard Analog Devices Blackfin DSP, only the 70x series is better by 35%… the 53x being 30% worst.

Now, if you want to build a graphic equalizer, you will have to run Biquad. For instance, when building eight channels and six stages graphic equalizer, your DSP will have to run 48 Biquad.

Biquad Benchmark

Again, the context:

  • Biquad is made on 256 samples block size
  • Results are expressed in term of clock cycles (smaller is better)
  • All DSP are floating-point except Blackfin
  • Clock cycles count is measured using Audio Weaver

In fact, the results are quite similar to those of the FIR benchmark: only the Cortex-A15 and the SHARC21489 exhibits better performance. The integrated FPU DSP (into the Cortex-M7 core) is using twice the amount of clock cycles when put side-by-side with the SHARC21489. If you compare the performance per price, the Cortex-M7 integrated in the SAMV71 is 50% cheaper! Using a SHARC DSP certainly makes sense if you want to build high performance home cinema system, but if you target automotive, it’s much more effective to select a FPU DSP integrated together with Flash (512KB to 2MB) and a full featured MCU.

The Atmel SAM V71 is specifically dedicated to support automotive infotainment application, offering Dual CAN and Ethernet MAC support. Other notable specs include:

  • 10/100 Mbps, IEEE1588 support
  • 12 KB SRAM plus DMA
  • AVB support with Qav & Qas HW support for audio traffic support
  • 802.3az Energy efficiency support
  • Dual CAN-FD
  • Up to 64 SRAM-based mailboxes
  • Wake up from sleep or wake up modes on RX/TX

Don’t forget that when looking to construct an automotive high-end radio, you still need room for Ethernet MAC and AVB support… What’s more, the SAM V71 only consume 68% of the DSP resource, leaving well enough space for both AVB and Ethernet MAC.

Interested? Explore the Atmel | SMART SAM V ARM Cortex-M7 family here. More information about the the DSP benchmark can be also found on DSP Concept’s website.  Also, be sure the detailed DSP Concept’s audio processing benchmarks.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger as well as one of the four founding members of SemiWiki.com. This blog first appeared on SemiWiki on May 6, 2015.

Simply the highest performing Cortex-M MCU


Why develop a new MCU instead of using a high-performance MPU? Eric Esteve says “simplicity.”


By Eric Esteve

If you target high growth markets like wearable (sport watches, fitness bands, medical), industrial (mPOS, telematics, etc.) or smart appliances, you expect using a power efficient MCU delivering high DMIPs count. We are talking about systems requiring a low bill of material (BoM) both in terms of cost and devices count. Using a MCU (microController) and not a MPU (microProcessor) allows for the minimizing of power consumption as such device like the SAM S70 runs at the 300 MHz range, not the GigaHertz, while delivering 1500 CoreMark. In fact, it’s the industry’s highest performing Cortex-M MCUs, but the device is still a microcontroller, offering multiple interface peripherals and the related control capabilities, like 10/100 Ethernet MAC, HS USB port (including PHY), up to 8 UARTs, two SPI, three I2C, SDIOs and even interfaces with Atmel Wi-Fi and ZigBee companion IC.

Atmel has a wide MCU offering from the lower end 8-bit MCU to the higher end Cortex-A5 MPU.

The Cortex-M7 family fits within the SAM4 Cortex-M4 and the SAM9 ARM9 products.
The Cortex-M7 family offers high performance up to 645 Dhrystone MIPS but as there is no Memory Management Unit, we can not run Operating System such as Linux. This family targets applications with high performance requirements and running RTOS or bare metal solution.

This brand new SAM S/E/V 70 32-bit MCU is just filling the gap between the 32-bit MPU families based on Cortex-A5 ARM processor core delivering up to 850 DMIPS and the other 32-bit MCU based on ARM Cortex-M. Why develop a new MCU instead of using one of this high performance MPU? Simplicity is the first reason, as the MCU does not require using an operating system (OS) like Linux or else. Using a simple RTOS or even a scheduler will be enough. A powerful MCU will help to match increasing application requirements, like:

  • Network Layers processing (gateway IoT)
  • Higher Data Transfer Rates
  • Better Audio and Image Processing to support standard evolution
  • Graphical User Interface
  • Last but not least: Security with AES-256, Integrity Check Monitor (SHA), TRNG and Memory Scrambling

Building MCU architecture probably requires more human intelligence to fulfill all these needs in a smaller and cheaper piece of silicon than for a MPU! Just look at the SAM S70 block diagram below, for instance.

SAM S70 Block diagram

SAM S70 Block diagram

The memory configuration is a good example. Close to the CPU, implementing 16k Bytes Instruction and 16k Bytes Data caches is a well-known practice. On top of the cache, the MCU can access Tightly Coupled Memories (TCM) through a controller running at MPU speed, or 300 MHz. These TCM are part of (up to) 384 Kbytes of SRAM, implemented by 16 Kbytes blocks and this SRAM can also be accessed through a 150 MHz bus matrix by most of the peripheral functions, either directly through a DMA (HS USB or Camera interface), either through a peripheral bridge. The best MCU architecture should provide the maximum flexibility: a MCU is not an ASSP but a general purpose device, targeting a wide range of applications. The customer benefits from flexibility when partitioning the SRAM into System RAM, Instruction TCM and Data TCM.

SRAM Partition Atmel Cortex M7
As you can see, the raw CPU performance efficiency can be increased by smart memory architecture. However, in terms of embedded Flash memory, we come back to a basic rule: the most eFlash is available on-chip, the easier and the safer will be the programming. The SAM S70 (or E70) family offers 512 Kbytes, 1 MB or 2 MB of eFlash… and this is a strong differentiator with the direct competitor offering only up to 1 MB of eFlash. Nothing magical here as the SAM S70 is processed on 65nm when the competition is lagging on 90nm. Targeting a most advanced node is not only good for embedding more Flash, it’s also good for CPU performance (300 MHz delivering 1500 DMIPS, obviously better than 200 MHz) — and it’s finally very positive in power consumption.

Indeed, Atmel has built a four mode strategy to minimize overall power consumption:

  • Backup mode (VDDIO only) with low power regulators for SRAM retention
  • Wait mode: all clocks and functions are stopped except some peripherals can be configured to wake up the system and Flash can be put in deep power down mode
  • Sleep mode: the processor is stopped while all other functions can be kept running
  • Active mode
Atmel's SMART | ARM Cortex M7 SAM S Series Target Applications

Target Applications depicted above for Atmel’s SMART | ARM based Cortex M7 SAM S Series. The SAM S series are general-purpose Flash MCUs based on the high-performance 32-bit ARM based Cortex-M7 RISC processors with floating point unit (FPU).

If you think about IoT, the SAM S70 is suited to support gateway applications, among many other potential uses, ranging from wearable (medical or sport), industrial or automotive (in this case it will be the SAM V70 MCU, offering EMAC and dual CAN capability on top of S70).


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger as well as one of the four founding members of SemiWiki.com. This blog first appeared on SemiWiki on February 22, 2015.

ARM unveils 32-bit Cortex-M7 processor for the Internet of Things

ARM has unveiled a new 32-bit Cortex-M processor that delivers double the compute and digital signal processing (DSP) capability of today’s most powerful ARM-based MCUs. The ARM Cortex-M7 is targeted at high-end embedded applications used in next generation vehicles, connected devices, and smart homes and factories. Atmel has been named one of the early lead licensees of the Cortex-M7 processor, enabling us to deliver exciting new products to the market in the forthcoming months.

Cortex-M7_Diagrams_V2(3)-03-03+(1)

“The addition of the Cortex-M7 processor to the Cortex-M series allows ARM and its partners to offer the most scalable and software-compatible solutions possible for the connected world,” explained Noel Hurley, General Manager of ARM’s CPU Group. “The versatility and new memory features of the Cortex-M7 enable more powerful, smarter and reliable microcontrollers that can be used across a multitude of embedded applications.”

The Cortex-M7 achieves an impressive 5 CoreMark/MHz. This performance allows the Cortex-M7 to deliver a combination of high-performance and digital signal control functionality that will enable MCU silicon manufacturers to target highly demanding embedded applications — including next-generation vehicles, connected devices and smart homes —  while keeping development costs low. System designers can therefore take advantage of extensive code reuse which in turn offers lower development and maintenance costs. Through these products, the benefits delivered by the Cortex-M7 processor will be evident in our increasingly connected world.

Cortex-M7 summary

Enabling faster processing of audio and image data and voice recognition, the benefits delivered by the Cortex-M7 processor will be immediately apparent to users. The core also provides the same C-friendly programmer’s model and is binary compatible with existing Cortex-M processors. Ecosystem and software compatibility offers simple migration from any existing Cortex-M core to the new Cortex-M7.

“The Cortex-M7 is well positioned between Atmel’s Cortex-M based MCUs and Cortex-A based MPUs enabling Atmel to offer an even greater range of processing solutions,” said Reza Kazerounian, Atmel Senior Vice President and General Manager, MCU Business Unit. “Customers using the Cortex-M-based MCU will be able to scale up performance and system functionality, while keeping the Cortex-M class ease-of-use and maximizing software reuse. We see the ARM Cortex-M7 addressing high-growth markets like IoT and wearables, as well as automotive and industrial applications that can leverage its performance and power efficiency.”

WhiteGoods cortex-M7

In today’s connected world, future devices will be getting smarter in order to operate more efficiently using minimal energy and resources. As ARM notes in its blog, these next generation products are moving to more sophisticated displays, advanced touchscreen panels, and advanced control motors to include field-oriented control algorithms in their motor driver control in order to operate more efficiently. Some of these also need to run communications software stacks to interface with other appliances and interface with the outside world to provide billing information, power usage and maintenance information.

All of these requirements demand more performance from a microcontroller, which lies at the heart of the appliance… and Cortex-M7 based MCUs will deliver that performance.

“The day the refrigerator talks to the milk carton, that’s in a gimmicky category. But to have the dishwasher and refrigerator coordinate their cycles to reduce the electricity load — that becomes useful,” ARM CEO Simon Segars told Reuters.

Cortex-M7-chip-diagramLG

Key features of the ARM Cortex-M7 core include:

  • Six stage, superscalar pipeline delivering 2000 Coremarks at 400MHz in a 40LP process
  • AXI interconnect (supports 64-bit transfer) and fully integrated optional caches for instruction and data allowing efficient access to large external memories and powerful peripherals
  • Tightly coupled memory interfaces for rapid, real-time response
  • Extensive implementation configurability to enable a wide range of cost and performance points to be targeted
  • Optional full instruction and data trace via the Embedded Trace Macrocell enabling greater system visibility
  • An optional safety package and built-in fault detection features contribute toward ASIL D and SIL 3 compliance, meaning Cortex-M7 is the perfect choice for companies targeting safety-related markets including automotive, industrial, transport and medical applications
  • Widest third-party tools, RTOS, middleware support of any architecture, provided by the ARM Connected Community of complementary partner companies.

atmel_SMART_arm_home_banner_980x352

From building automation to smart metering to wearables and other Internet of Things (IoT) applications, a new generation of connected products are increasingly powering our lifestyle. Internet and wireless enabled devices embedded with processors give these once-ordinary “things” new powers. Atmel continues to make it easy for designers to create a more intelligent, more connected world through its Atmel | SMART family. This lineup of ARM-based MCUs drive smart, connected devices in the era of IoT, wireless, and energy efficiency. These solutions include embedded processing and connectivity — as well as software and tools — designed to make it faster and more cost-effective to bring smart products to market. Atmel | SMART MCUs combine powerful 32-bit ARM cores with industry-leading low-power technology and intelligent peripherals.

To learn more about the newly-unveiled, high-performance processor, you can read ARM’s entire press release here.