Tag Archives: Clint Witchalls

Atmel is building the Internet of Things (IoT)

The Internet of Things (IoT) refers to a future world where all types of electronic devices link to each other via the Internet. In 2009, there were 2.5 billion connected devices; most of these were mobile phones, PCs and tablets. By 2020, there will be over 30 billion connected devices of far greater variety.

According to Gartner, 50% of companies expected to help build the rapidly evolving Internet of Things have yet to coalesce. This is precisely why Atmel views the Maker Movement as one of the primary tech incubators for future IoT companies and devices, many of which will undoubtedly use Atmel microcontrollers (MCUs) to power their respective platforms.

MakerBot, which manufactures the Atmel-powered Replicator 3D printer, is a perfect example of a Maker-inspired company that emerged from nothing, yet was recently acquired for approximately $600 million by Stratasys. Adafruit, responsible for designing the Atmel-powered Gemma, Trinket and Flora platforms, is another example of a successful company started by Makers, for Makers. Of course, Atmel is also at the heart of multiple Arduino boards used by millions of Makers, engineers, schools and corporations all over the world.

There is a reason Atmel’s MCUs and MPUs are the silicon of choice for both Makers and industry heavyweights. Simply put, our low power sipping portfolio, which includes WiFi capability and extensive XSense integration options, is optimized for a wide variety of devices, ranging from IoT wearables to more stationary industrial platforms with connected capabilities such as smart grids and home appliance automation. Indeed, an IoT-enabled smart grid equipped with advance sensors offers huge energy savings, helping to create a green and sustainable future by conserving power and reducing water consumption.

Clearly, the age of IoT is already upon us. To be sure, over three-quarters of companies are now actively exploring or using the Internet of Things (IoT), with the vast majority of business leaders believing it will have a meaningful impact on how their companies conduct business. As noted above, the number of “things” predicted to be connected to the Internet by the end of this decade range from a staggering 30 billion to 50 billion.

According to Clint Witchalls, the Internet of Things is a quiet revolution that is steadily taking shape. Businesses across the world are piloting the use of the IoT to improve their internal operations, while preparing a stream of IoT-related products and services. Consumers might not (initially) recognize them as such, but that will not stop them from being launched, as few end users need to know that user-based car insurance, for example, is an IoT-based application.

From our perspective, the IoT represents one of the greatest potential growth markets for semiconductors over the next several years. That is precisely why Atmel remains focused on designing the absolute lowest power sipping products, particularly with regards to microcontrollers (MCUs) which offer maximum performance and meet the requirements of advanced applications. Atmel also offers highly integrated architecture optimized for high-speed connectivity, optimal data bandwidth and rich interface support – making our microcontrollers ideal for powering the smart, connected products at the heart of the IoT.

IoT: A quiet revolution is taking shape

Over three-quarters of companies are now actively exploring or using the Internet of Things (IoT), with the vast majority of business leaders believing it will have a meaningful impact on how their companies conduct business.

iotdetailedchart

Based on current estimates, the number of “things” predicted to be connected to the Internet by the end of this decade range from a staggering 30bn to 50bn.

Clearly, consumers will likely soon be awash with IoT-based products and services – even if they may not realize it. As Clint Witchalls notes in a recent report sponsored by ARM, data is therefore a fundamental component of the IoT’s future.

Indeed, fitting sensors to a potentially infinite number of “things” will generate untold amounts of new information. However, most business leaders remain confident that their organizations will be capable of managing and analyzing the data flowing from the predicted rapid expansion in IoT networks. The solution will be finding an acceptable balance that does not slow the system down to the extent that it becomes unworkable. This is obviously a challenge for organizations, but one that is surmountable.

“There is this very simple equation that we’ve learnt,” explains Elgar Fleisch, the deputy dean of ETH Zürich. “People will use a technology if the perceived benefit is larger than the perceived risk. As long as the perceived benefit is bigger, people don’t worry as much about the risks.”

To be sure, says Witchalls, the IoT is a quiet revolution that is steadily taking shape. Businesses across the world are piloting the use of the IoT to improve their internal operations and are preparing a stream of IoT-related products and services. Consumers might not (initially) recognize them as such, but that will not stop them from being launched, as few end users need to know that user-based car insurance, for example, is an IoT-based application.

Yet some important unknowns remain, Witchalls acknowledges. Perhaps most importantly, nobody knows what the winning business models are going to be. Even seasoned management consultants will struggle to provide definitive answers. Simply put, it is likely a matter of experimenting with different models to see which ones work.

The main message for latecomers and doubters? Consider the opportunities offered by the IoT—if nothing else than to improve internal operations. To be sure, there is a consensus that companies which are slow to integrate the IoT risk falling behind the competition. As such, the next step for business leaders is to decide what IoT commitments and investments they are ready to make, and where.

Interested in learning more about the rapidly evolving IoT? Part one of this series can be read here, part two herepart three here and part four here.

The IoT connects a cast of billions

Based on current estimates, the number of “things” predicted to be connected to the Internet by the end of this decade range from a staggering 30bn to 50bn. However, as Clint Witchalls notes in a recent report sponsored by ARM, having connected “things” is the easy part. More difficult will be getting these things to communicate with each other—where human involvement is still necessary.

iotchart1

“With the traditional Internet it was easy to ‘go it alone.’ Voice over Internet protocol (VoIP) start-ups did not first sit down with telecommunications operators and work out how they would fit together in the ecosystem,” Witchalls explains. “[In] contrast, the IoT tends to follow Metcalfe’s Law, which says that the value of a network is proportional to the square of the number of its users. Thus, a more cooperative approach than that shown in the past by telecoms and Internet companies will be required. Many users are needed to achieve the ‘network effects.'”

Kevin Ashton, who originally coined the term the “Internet of Things” (IoT) in 1999 while working at Proctor & Gamble, draws another clear distinction between the Internet and the IoT. As Ashton points out, the rollout of the traditional Internet happened relatively quickly, with companies granted access to a system that could interoperate before they had invested too heavily in systems that could not.

Since then, companies have built up their own networks, with significant investment. The challenge? To convince corporations to see the benefits in a common network. A simple example of one of these “walled gardens,” says Ashton, is employee office passes or ID badges, many of which are fitted with radio-frequency identification (RFID) tags. While swiping an ID card will get an employee into his or her workplace, the employee still has to fill out a form or wear an identity sticker when visiting a different office building. A common network between landlords could eliminate this inefficiency, while creating a much richer data set on employee whereabouts.

“What we have right now is a lot of IoT-type technology that is heavy on things and light on Internet,” Ashton confirms. “That’s [really] the bit that needs to change.”

Unsurprisingly, much of the collaboration currently under way within industry verticals is around standards, such as information-exchange protocols. According to Elgar Fleisch, the deputy dean of ETH Zürich, there is an extensive standardization effort going on.

“The main impact of standardization is that every computer can talk to every other computer and everything can talk to every other thing,” he says. “That dramatically reduces the cost of making things smart. The IoT will not fly if we don’t have these standards.”

Clearly, the full potential of the IoT will only be unlocked when small networks of connected things, from cars to employee IDs, become one big network of connected things extending across industries and organizations. Since many of the business models to emerge from the IoT will involve the sale of data, an important element of this will be the free flow of information across the network.

Interested in learning more about the rapidly evolving IoT? Part one of this series can be read here, part two here and part four here.

Taking the IoT to the next level

Over three-quarters of companies are now actively exploring or using the Internet of Things (IoT), with the vast majority of business leaders believing it will have a meaningful impact on how their companies conduct business. Clearly, the the IoT is reaching a tipping point.

iotimpact

Although the concept of an Internet of Things has been around for at least a decade, the IoT is beginning to become an important action point for the global business community. As Clint Witchalls notes in a recent report sponsored by ARM, there is no doubt that IoT-related technology is already having a broad impact across the world. Although the precise effect is likely to vary by country and by company, it is hard to imagine any sector will be left untouched by rapidly evolving Internet of Things.

Kevin Ashton who originally coined the term the “Internet of Things” (IoT) in 1999 while working at Proctor & Gamble, points out that the recent “trickle” of IoT product releases is all part of a larger plan to test market appetite.

“We are trying to understand before we get in too deep, because once you are financially invested and committed you cease to become agile. Then you really have to start building on the thing you’ve already invested in,” Ashton explains. “In the early stages of technology deployment it’s a charitable act really to explore a new technology because the return on investment isn’t there, it’s too expensive and it’s too unknown. That’s where government has a role.”

Looking ahead, investment in the IoT should continue to increase as more and more senior executives move up the IoT learning curve. According to Witchalls, the costs associated with the IoT will continue to fall concurrently – just like any nascent technology. Indeed, a number of early adopters believe that the technology is already mature enough and cheap enough to make IoT products and services viable without the need for a big upfront investment, at least for initial trials.

“You don’t need a lot of R&D, it’s more about integration,” says Honbo Zhou, a director of China’s Haier. “Everyone can build it [into their products]. It’s just a matter of finding a business model that works.”

Meanwhile, Elgar Fleisch, the deputy dean of ETH Zürich, a science and technology university, says he believes IoT adoption will be quite different from what he dubs the “Internet of people revolution.”

During the first phase of the Internet, he maintains, anyone with a good idea and a computer could start an organization with global reach. However, Fleisch sees the initial advantage in the “IoT revolution” going mainly to bricks-and mortar organizations, especially large firms with many assets to track and monitor. Meaning, we are unlikely to see another Facebook, Yahoo or eBay.

“There will be winners and losers, but we are unlikely to see entirely new big players entering the market,” Fleisch opines.

Notwithstanding the significant involvement of the physical world of assets and products, the IoT is still expected to be a less visible revolution than the traditional Internet.

“PayPal, Groupon and YouTube are well-known Internet companies, yet few people are probably aware that the smart meter in their cellar means that their home is a part of the IoT,” writes Witchalls. “As organizations move towards the ‘productization’ of the IoT, there are signs that business leaders recognize that this need not be a major hindrance: undeveloped consumer awareness is not seen as one of the top obstacles to organizations using the IoT. After all, consumers will always want products and services that are better, cheaper, greener and more convenient.”

As Ashton notes, “Consumers are not going to demand the Internet of Things. Nobody is going to demand the underlying infrastructure.”

Rather, says Ashton, consumers will demand some value and benefit.

“They’re going to demand a security system that they can control from their smartphone. You don’t go to the end user and talk about the Internet of Things. You go to the end user to talk about benefits,” he adds.

Want to learn more about how the IoT revolution is gathering pace and reaching a tipping point? Part one is available here, part two here, part three here and part four here.

The IoT revolution is gathering pace (Part 1)

In a recent report sponsored by ARM, Clint Witchalls confirms that the rapidly evolving Internet of Things (IoT) is an idea whose time has finally come. As Witchalls notes, falling technology costs, developments in complementary fields like mobile and cloud, together with support from governments have all contributed to the dawning of an IoT “quiet revolution.”

internetofthingsvisualized

Indeed, over three-quarters of companies are now actively exploring or using the IoT, with the vast majority of business leaders believing it will have a meaningful impact on how their companies conduct business. In addition, says Witchalls, consumers will likely soon be awash with IoT-based products and services – even if they may not realize it.

“Over the next few years the IoT is expected to have the biggest impact on customer service and products and services. Current activity should mean that a strong pipeline of IoT-based products and services will soon begin reaching the market. [As such], businesses should be prepared for an explosion of IoT-generated data. Fitting sensors and tags to products will generate even more data than are currently being created and captured,” writes Witchalls.

“Companies feel confident in their ability to handle this explosion of information, but prior experience of storing and analyzing large amounts of ‘big data’ may lead them to underestimate the additional talent and skills needed to spot new uses and revenue streams emerging from it. Data security and privacy are also likely to grow in significance as more consumers engage with IoT-based products.”

As we’ve previously discussed on Bits & Pieces, it was Kevin Ashton who originally coined the term the “Internet of Things” (IoT) in 1999 while working at Proctor & Gamble. At that time, the idea of everyday objects with embedded sensors or chips that communicate with each other had been around for over a decade, although it was then known as “ubiquitous computing” or “pervasive computing.”

“What was new was the idea that everyday objects—such as a refrigerator, a car or a pallet—could connect to the Internet, enabling autonomous communication with each other and the environment,” he explains.

Ashton is currently a general manager at Belkin, a US manufacturer of consumer electronics.

“I was incredibly excited and optimistic about the Internet of Things, but compared to my optimism, progress seemed incredibly slow,” he reminisces. “It was quite frustrating. We were dealing with a lot of senior executives who had grown up long before the age of email, and it just wasn’t clicking with them.”

However, Ashton confirms that the interim period has yielded a new generation of technologists who have grown up in the wireless world.

“Most of the people I see driving the Internet of Things forward in interesting ways now were probably undergraduates in 1999.”

As a result, he maintains that the IoT is no longer the future—it is the here and now. Proof of this is in the numbers, he says. A manufacturer of sensors recently told him that it sold 2bn units last year and expects to sell 3bn in 2013.

“Where are they going?” he asks. “Clearly somebody is buying [sensors] and using them.”

According to Witchalls, a number of developments have contributed to business adoption of the IoT. One particularly critical factor is the falling cost of the underlying technology: the sensors and actuators fitted to “things” to connect them to the Internet and their environment, such as radio-frequency identification (RFID) and microelectromechanical systems (MEMS).

To be sure, the cost of an RFID identification tag, which is commonly used to track assets and manage inventory, fell by 40% in the 18 months to April 2013, with one tag now costs about 10 US cents. In addition, the price of MEMS, such as accelerometers, gyroscopes and pressure sensors, has fallen by 80-90% in the past 5 years.

“[Another reason] the IoT has finally come of age is the mobile Internet, epitomized by ubiquitous smartphones and tablet devices. The IoT involves devices communicating with each other (machine-to-machine communications, or M2M), but it also involves devices communicating with people and people communicating with devices,” Witchalls added.

“For example, a healthcare professional may be alerted via a smartphone that a patient’s blood pressure has risen above a critical threshold, or a smartphone may allow a consumer to switch the air-conditioning on at home, even though they are at work.”

Want to learn more about how the IoT revolution is gathering pace? Be sure to check back tomorrow for part two of this series.