Tag Archives: Chemistry

This robotic experiment recreates evolution

Sure, we’ve seen 3D printing used to manufacture products, extrude chocolate and even create an electric vehicle, but now one 3D-printed robot is helping explore the origins of mankind.


Writing for Wired UKJames Temperton has revealed that a group of University of Glasgow chemists have successfully created the first “synthetic cells” that can evolve outside of biology, simply using a 3D-printed bot and a PlayStation camera — without any human input. The research could one day help us understand how life first appeared billions of years ago.

“Right now, evolution only applies to complex cells with many terabytes of information but the open question is where did the information come from? We have shown that it is possible to evolve very simple chemistries with little information,” Professor Lee Cronin tells Wired UK.


“Creating life from scratch is hard — and we know little about the origin of life before biology — but the use of simple robots is speeding up our understanding. The robot places four droplets of the same chemical composition into a Petri dish and uses the camera to see what happens. This process is repeated over and over again with randomly different compositions of droplets.”

The team employed a robotically-controlled [Atmel based] RepRap 3D printer responsible for carrying out the experiments with synthetic cells, while a PlayStation camera snaps photos for further analysis. The robot extrudes droplets of a chemical composition into a Petri dish and tracks its development.

Each of the droplets behave differently — some divide, some move and some vibrate. They team used its robot to deposit populations of droplets of the same composition, then ranked these populations in order of how closely they fit the criteria of behavior identified by the researchers. Using a special computer algorithm, in true survival of the fittest fashion, the robot selects the “fittest” molecules and carries these into the next experiment.

The droplets consist of four different chemicals: 1-penatol, 1-octanol, diethyl phthalate and either dodecane or octanoic acid, suspended in an alkaline solution. This is extruded over and over and over again, each time with different results. Over the millions of experiments the robot performs, it has already become apparent that the various printed droplets behave differently, and clump together to form different compositions.


“By hacking together this kit we have in effect built a highly sophisticated machine that can fully automate the life cycle of a chemical protocell model. We’ve then used the robot to explore lots of different types of ingredients to try and come up with interesting recipes that show ‘life-like’ behaviors,” Cronin explains.

The initial experiments have proven to be a success in recreating the evolution process during its primordial stage, as the chemically created synthetic cells are seen evolving under the guidance of robotic selection.

“Although we used a robot, this can be viewed as a proxy for a random droplet generator and we can show that statistically, the chances of droplet evolution happening at the origin of life is higher than a complete biological cell just springing into existence,” the professor concludes.

Interested in learning more? You can read the entire Wired UK writeup, or watch the experiment in action below!