Tag Archives: Bosch Sensortec

This smart system wants to make rehabilitation more enjoyable

These Makers are looking to revolutionize rehabilitation with their new system. 

As many of us know all too well, injuries to the hand and wrist are fairly common among children. Making matters worse, rehabilitation exercises tend to be just as demotivating as they are monotonous. So wouldn’t it be nice if there was a much easier, more efficient and engaging way to help propel young patients to achieve full recovery? This is a problem that a team of German Makers set out to solve.


Their solution? An interactive system that they call Cynteract. It consists of a smart glove, an Oculus Rift headset and some self-developed software, which together create an immersive experience for kids and teens as they perform their rehab activities.

The unique design of the rehabilitation glove enables a wearer to track the positions of each finger individually. Combined with the Bosch BNO055 (Atmel | SMART SAM D20), the Makers were able to precisely reconstruct the movements of the real hand in their virtual environment while providing haptic and visual feedback back to the user. Aside from that, the wearable is equipped with a Bluetooth module for wireless operation, a LiPo battery for power and a microUSB port.


Additionally, the Makers employed an ATmega32U4 MCU to drive the equipment as well as transmit the measurement between the glove and the computer. In terms of software, Cynteract features a multi-player VR game that lets two patients compete against one another. Little do they know that, as they control the game with their hands, they are actually carrying out the once-monotonous rehabilitation movements.

“The demonstration game is similar to Connect Four or Tic-Tac-Toe. When the player closes his hand, thus performing the essential human fist grip, he will automatically grab a disc. By moving his hand, the patient chooses the desired column. The disc falls straight down and occupies the next available space, when he releases his grip. The actions of both users are synchronized over a network,” the team explains.


And we can’t forget to mention that Cynteract was also completed with the help of 3D printing, which allows for perfectly-fitting, personalized gloves with complex designs for each user. Interested? Head over to the project’s page here.

BMF055 is a 9-axis sensor with an ARM Cortex-M0+ core

The BMF055 is programmable 9-axis motion sensor with an accelerometer, a gyroscope, a magnetometer and an Atmel | SAM D20 MCU.

Bosch Sensortec has just unveiled a compact 9-axis motion sensor, which incorporates an accelerometer, a gyroscope and a magnetometer along with an Atmel | SMART SAM D20 ARM Cortex M0+ core.


The BMF055 is the perfect match for those looking to develop advanced application-specific sensor fusion algorithms, add sophisticated motion sensing capabilities, and replace multiple discrete components with a single package. Boasting a tiny 5.2mm x 3.8mm x 1.1mm footprint, the latest board from Bosch Sensortec’s Application-Specific Sensor Node (ASSN) family easily integrates with a wide range of projects from robotics and drones, to gaming and navigation, to augmented reality and human interface devices for the IoT — all of which require a customized SiP solution.


On top of that, Bosch Sensortec provides an additional SDK featuring a precompiled BSX Lite fusion library with integration guidelines and API source files for individual sensors, as well as example projects as a plugin for Atmel Studio. Intrigued? Head over to BMF055’s page here.

Rolling MCUs, connectivity, security and software into one wearable package

This Android-based, Bluetooth-enabled wearable badge can act as a compass, watch, slideshow app, battery gauge and more.

Did you know that 45.7 million wearable devices are expected to ship this year, up 133.4% from the 19.6 million units shipped in 2014? And by 2019, reports are calling for shipment volumes to reach 126.1 million units, resulting in a five-year CAGR of 45.1. Given this emergence of body-adorned technology, the need for a hardware and software-based turnkey solution has never been so paramount. With this in mind, Atmel has unveiled the first-ever wearable solution that integrates its broad solutions offering all rolled into one.


Just in time for Computex 2015, the company has designed a 7cm x 9cm demonstrator around a smart badge concept, which combines low-power embedded processing, wireless, touch and sensor technologies to form an unparalleled turnkey system for virtually any type of wearable application.

This demonstrator converges hardware and software technologies, from Atmel and its partners, into a highly optimized and comprehensive out-of-the-box solution that addresses the complex requirements for the burgeoning wearable market, all while bringing their designs quickly to market. Users can wear it around their neck and display different applications (compass, watch, spirit level, slide show, battery gauge) specialized for the Andriod operating system (OS) and made by Adeneo Embedded.

“Adeneo Embedded has a long standing partnership with Atmel on Linux, Windows Embedded and more recently Android porting activities for AT91SAM ARM based MPUs,” said Yannick Chammings, Adeneo Embedded CEO. “With the collaboration on the Smart Badge concept, implementing Android-based wearable scenarios, Adeneo Embedded will scale OS and SW support to OEMs developing smart, connected, wearable devices.”

Based on Atmel’s embedded connectivity, the demonstrator can interact with other Android mobile phones. The badge uses a 3.5-inch display from Precision Design Associates and embeds MEMS and sensor technology from Bosch Sensortec, as well as memory multi-chip package from Micron combining 4Gb of LPDDR2 + 4GB of eMMC in a single package demonstrator running on the Android KitKat OS. Beyond that, Atmel is also developing a software framework that will allow various software partners to plug in their software and seamlessly work together.


With the anticipated growth of the wearable space, designers are continually seeking solutions that combine all the necessary and complex technologies into a simple, ready-to-use solution, enabling designers to focus on differentiating their products. The Smart Badge is the first demonstrator to bring together the company’s ultra-low power Atmel | SMART SAMA5D31 MPU, the Atmel | SMART SAM G54 sensor hub solution, a maXTouch mXT112S controller and a SmartConnect WILC3000 Wi-Fi/Bluetooth integrated solution.

“Atmel possesses the most complete, lowest power technology portfolio for wearable devices worldwide,” explains Vince Murdica, who is responsible for Atmel’s sensor-centric business unit. “Atmel’s Smart Badge is the first of many wearable reference designs and platforms to come as we want to ensure when customers think wearables, they think Atmel. We are very focused and excited to help accelerate the growth of the wearable market with turnkey, low power, complete hardware and software solutions.”

Watch the badge in action below!

pico-Platinchen is a pocket-sized, Arduino-compatible wearable board

This Arduino-sensor combination is perfect for your next wearable design.

Last year, Guido Burger had brought to our attention his impressive blueIOT. The open sensor platform was based on the ultra low-power combination of an ATmega328P MCU and a BLE module along with a single coin cell battery. Created in collaboration with the Fab-Lab Europe team, the board would on to be successfully implemented in a number of applications, ranging from DIY fitness trackers and smart socks to  magical Easter Egg hunts and hacked Nespresso machines — which you will actually be able to witness live at Maker Faire Bay Area.


Well, hot on the heels of its predecessor’s success, Burger has returned with the latest innovation from his crew: the pico-Platinchen. The uber mini, Arduino-compatible board was designed with wearable devices in mind and comes loaded with a high-precision, absolute orientation sensor from Bosch Sensortec. The BNO055 is joined by an ATmega328P, and like its older sibling, is powered by a CR2032 coin cell battery.

“The basis for your projects comes pre-integrated but you can still can expand it with more LEDs, sensors (e.g. I2C/SPI) and displays,” Burger explains. “Also, pico-Platinchen is a perfect basis for students and kids to start exploring the physical world: g-forces, magnetics, movements and much more!”


With a diameter of only 20mm, pico-Platinchen is ideal for projects that involve sewing, particularly hats. What’s more, the platform packs the punch of an Arduino Uno along with the flexibility of an entire 9-DOF sensor. And, to provide on-board notifications and color-fading, the Fab-Lab team decided to add some NeoPixels (WS2812 LEDs) that can drive up to 256 lights with the pico-Platinchen right out of the box.

“By the way, it comes with a lot horse power,” Burger adds. “The motion co-processor for 3D maths is an Atmel | SMART SAM D21. [The] gyro, accelerometer and magnetometer are [all] combined with high-precision and 100Hz update for an absolute orientation in 3D space.”


Using the Arduino IDE 1.0.7, Makers can build their own application with just a few lines of code in a matter of minutes. Aside from wearable projects, pico-Plantichen makes for a viable option in a variety of settings, whether that’s robotics, aviation or even in education (particularly physics). What’s more, the board can be coated for underwater projects.

Intrigued? The pico-Platichen is now available on Tindie for $32. Meanwhile, if you’re wondering what to make with the super small, wearable board, you can check out one of its recent projects on Hackster.io here.

Atmel’s MCU maestro talks IoT

Atmel Sr. Product Marketing Manager Andreas Eieland (@AndreasMCUguy) recently sat down with Graham Pitcher of NewElectronics to discuss the Internet of Things (IoT). As Pitcher notes, the IoT is exerting a major influence on the evolution of microcontroller (MCU) technology in 2014 and beyond.

“In broad terms, the IoT comprises three elements: edge devices, which often perform one dedicated function; hubs or fusion devices, which integrate data from edge devices; and larger processing elements,” said Pitcher. 

”It’s the first two categories which are currently focusing the minds of MCU developers. The reason? The IoT demands two things above all others – minimal power consumption and the lowest possible cost.”

Eieland concurred.

“Being able to have the right features at the right power consumption will be critical,” he said. “Edge devices will need to run from harvested energy or for their full lifetime from a single battery.”

According to Eieland, MCUs will ultimately have to consume less than 1µA and less than 200nA in deep sleep.

“Atmel makes 8051 based MCUs, but if you want to connect to ZigBee, for example, our AVR cores are a better choice,” he explained. “But we also have a Cortex-M0+ part that competes in that sector.”

In terms of specific product examples, Eieland highlighted Atmel’s close collaboration with Bosch Sensortec on the development of the BNO055.

“There are six dice in the package, including a SAM D20 MCU,” Eieland confirmed.

“It’s a good example of how we are working with sensor manufacturers to get the most size efficient solutions possible.”

Eieland also commented on low geometry processes, noting that refinement of existing technology may very well be sufficient.

“We don’t think we want to go to 55nm because leakage at that node will be significant. Processes in the range from 100nm to 150nm may well be suitable, with one more product generation needed to evolve the low power aspects,” he concluded.