Tag Archives: Blend Micro

This biometric band can unlock your touchscreen device


Instead of passwords, what if your tablet authenticated you each time you touched the screen?


Having to continually enter passwords isn’t so convenient, especially when you’re in a rush. With hopes of putting an end to login prompts, two researchers have developed an innovative way of authentication for pretty much any touchscreen device. The brainchild of Christian Holz and Marius Knaust (who you may recall from their earlier project Bodyprint), Bioamp is a smart strap that uses a biometric sensor and a low data rate transmitter to access and protect content on tablets.

biometric_touch_sensing-bioamp-1

“From each touch, the touchscreen senses the 2D input coordinates and at the same time obtains biometric features that identify the user. Our approach makes authentication during interaction transparent to the user, yet ensures secure interaction at all times,” the duo explains.

To test their concept on today’s gadgets, they first created a watch-like prototype. Bioamp is equipped with several electrodes that sense the impedance profile of a wearer’s wrist and then modulate a signal to the body through their skin. From there, the touchscreen obtains the biometric data, identifies the particular user, and continuously grants permission for each interaction.

biometric_touch_sensing-notification-b

As Hackaday notes, Bioamp’s electrodes couple a 50V 150kHz signal through a wearer’s finger to the touchscreen, which picks up both the finger’s location via capacitive sensing and the background signal that’s transmitted by the bracelet. This background signal is modulated on and off, relaying the biometric data.

“Since Bioamp senses contact with skin, it is sufficient to collect biometric values initially and then ensure that the same user is wearing the device during further use. When Bioamp detects that the user has taken off the band, it stops transmitting signals, waits for the band to be put on again, and repeats the biometric measurements for subsequent modulation,” the duo writes.

biometric_touch_sensing-logins-d

The researchers integrated their approach into a Surface 2 Pro running Windows 8.1 to demonstrate various use cases, which include payment for app store purchases, authentication for emails and notifications, as well as temporary access for sharing photos. Additionally, Bioamp supports logins that require more than one person to be present at a time. For example, two users would need to touch a single login tile simultaneously in order to unlock and open sensitive emails.

In terms of hardware, Bioamp is driven by a Blend Micro. This board features an ATmega32U4 MCU and an nRF8001 BLE chip, which handles the wireless data transmissions to the tablet to compensate for low touchscreen sampling rates. Meanwhile, power is supplied by a pair of 110mAh LiPo batteries.

While some may argue that there are limitations to the design, this idea of making touch interaction convenient and secure is pretty darn cool. You can see it in action below, and be sure to read all about it in their research paper here.

Play a board game connected to your iPhone to earn a full-time job


Trying to land a job is tough. What if it became fun? Thanks to one group of Makers and a BLE Arduino, it can.


Led by designers Guillaume Beinat and Alexandre Suné of Tazas Project, a dozen graduate students from France’s École de Communication Visuelle Aquitaine created an immersive board game that highlights the experience of being a marketing agency intern.

interntrip011

The aptly-dubbed InternTrip game is based on a Blend Micro (ATmega32U4) and pairs with an iPhone to serve as its interface. As its name would imply, the project recreates the experience (or “trip”) of landing a job at a communications firm, from starting as an intern to landing a full-time position. The system relies on the use of the Arduino BLE chip to calculate a player’s position on the board and simultaneously relay the information over the mobile device.

The received coordinates enable the player to discover inside the walls of the agency by moving their smartphone over the exterior of the building, which in this case is the game board.

interntrip02

“From table football to the terrasse, passing by the coffee machine or the photocopier, they invite us to visit the agency, to talk with the team and to compete with our colleagues in head to head questionnaires about the world of advertising. This is your time, young, exploited interns, to take your revenge and land that job,” the team writes.

Pretty interesting concept, if you ask us. Watch the video below to see it in action! (Nice find, Arduino!)

ATmega32u4 + Bluetooth = Blend Micro


RedBearLab has launched the Blend Micro, a mini development board targeted at the Internet of Things (IoT). Powered by Atmel’s popular ATmega32u4 microcontroller (MCU), the board is also equipped with a Bluetooth 4.0 Smart Energy chip.

Blend Micro is compatible with Nordic’s Bluetooth Smart SDK for Arduino, making software development easy via the official Arduino IDE.

So, how does the board work? 

According to the RedBearLab crew, the nRF8001 chip communicates with Atmel’s Atmega32u4 MCU via the ACI (Application Controller Interface). Although the ACI is similar to SPI, it does not actually function as SPI. Indeed, SPI consists of MOSI, MISO, SCK and SS, whereas ACI includes MOSI, MISO, SCK, REQN and RDYN.

“Since the nRF8001 chip may receive data anytime (even when not selected by SPI master) the SS line is not needed. For the ACI, data exchange [is routed] through MOSI and MISO, [while] SCK provides the clock generated by master,” a RedBearLab rep explained.

“When the master wants to request data from BLE Shield, it [shifts] the REQN to low until RDYN line is put to low by BLE Shield. The master then generates the clock to read out the data. After reading out the data, master will release the REQN and BLE Shield release the RDYN, putting them to high.”

The Blend Micro runs at 3.3V to reduce level shifting, since the nRF8001 chip only accepts 3.3V. As such, the onboard LDO converts 5V from the USB power source into 3.3V for the board.

“Normally, you should set Blend Micro to run at 8 MHz/3.3V. However, if you want to run faster and not concern about the reliability (we do not see any issue so far), you can run it as 16 MHz [for a] so-called ‘overclock,’ the rep added.

Interested in learning more? You can check out Blend Micro’s official page here.