Tag Archives: Biometrics

JAR is a coin-sized biometric crypto key

Instead of using passwords to access websites, JAR lets you login or register with the touch of your finger.

With seemingly a new data breach emerging every week, cybersecurity has become a key concern among a majority of consumers. Despite these incidents, many people still rely on stupidly simple passwords. Just how simple, you ask? Take a look at this recently-revealed list from 2014. The problem with these codes is that most, if not all, of us are pretty bad at remembering them, and with so many different ones for different sites, we rely upon insecure behaviors.


Fortunately, one German startup has devised a solution to the ever-growing password epidemic with a coin-sized gadget. Equipped with its own fingerprint reader, JAR connects to your mobile device via its audio jack, enabling you to securely access your online accounts with a single touch. Just how secure are we talking? Its creators claim that the encryption is so strong that it would take a hacker 6.4 quadrillion years to access your data.

The JAR, which is tiny enough to be attached to a keyring, runs an asymmetrical encryption method based on a pair of 2048-bit RSA keys. To gain entry, gently place your finger on its built-in biometric reader and presto! Because each message is encrypted separately, there’s no way to derive one message from the previous message; each encrypted message broadcasted is non-deterministic and pseudorandom.


“Your devices will only unlock for the most recent message, so a hacker is unable to unlock your devices by re-broadcasting an old message,” the team explains. “Only devices that you’ve set up with your JAR will have the ability to interact with it. A device still has to verify its legitimacy through an automatic encrypted handshake in order to interact with your JAR.”

Should you lose your JAR, not to worry as it can be easily deactivated. When this occurs, a message is immediately sent to all of your devices, letting them know that they should not prompt access to your accounts safeguarded by the lost piece.


Looking ahead, JAR will also offer a range of services including reliable cloud storage, an offline data vault, and an encrypted messenger, among several others from third parties. At the moment, JAR is available in two colors (soft white and dark grey) as well as two different sizes (1.6” and 1.4”).

Ready to forget about passwords? Head over to JAR’s Kickstarter page, where the team is currently seeking $108,305. Units are expected to begin shipping in January 2016.

New collaboration brings biometric fingerprint sensors and touchscreens to smart devices

We’re excited to announce a new partnership with our friends at Fingerprint Cards AB (FPC), as we look to bring the world’s best capacitive touchscreens and touch fingerprint area sensor technology to smart devices.


With the strong synergy between fingerprint and touchscreen technologies, there are countless opportunities for both companies to co-develop and merge their solutions to provide intelligent user interfaces in the ever-growing Internet of Things (IoT) era. In this collaboration, Atmel and FPC converge the award-winning maXTouch® touchscreen controllers and market-leading fingerprint sensors into an enhanced, cohesive solution for a secure and flawless user experience.

For those unfamiliar, the revolutionary maXTouch controllers represent Atmel’s industry-leading capacitive touchscreen controllers for the mobile market. These well-adopted controllers feature a range of user interface technologies — from active stylus to hover — with cutting-edge performance to create a best-in-breed platform for consumers.

As mobile devices become an integral part of the digital lifestyle and grow to encompass everything from mobile banking to household security, emails to remote database access and more, consumers are demanding ever-more sophisticated features from a flawless touchscreen user interface to robust and convenient security options such as fingerprint-based user verification. The joint solution accelerates an OEM’s time-to-market by bringing must-have high-performance security and user interface solutions from two leading providers.

“Biometric fingerprint security is the next leap towards a more differentiated touchscreen device in the era of the Internet of Things where more secure, smart and connected devices are powering the world,” said Stan Swearingen, Atmel Senior Vice President and Chief Technology Officer.

“Atmel has a long history in the security space, and when this expertise combines our market-leading maXTouch technologies with FPC’s secure biometric fingerprint sensing technology, we are able to bring a more secure, efficient touchscreen that delivers a unique user experience. We are looking forward to taking advantage of FPC’s fingerprint sensor technology in bringing a highly compelling joint proposition to device OEMs.”


FPC’s touch fingerprint sensors and swipe fingerprint sensor are based on patented proprietary technology, which offers several strong advantages such as an acknowledged high image quality, programmable pixel elements and 256 gray scale values from every pixel element. Thanks to the image quality of its sensors and the performance of its algorithms, FPC’s fingerprint sensors offer industry leading biometric performance while maintaining the market’s lowest power consumption.

“In order to bring more security to mobile devices, device manufacturers are adopting fingerprint sensing technologies to offer consumers an improved user experience,” added Jörgen Lantto, FPC Acting President and CEO. “We are collaborating with Atmel, a global touchscreen leader to ensure our technologies are built around world-class user interfaces to give consumers an enhanced experience every time. FPC is thrilled to team up with Atmel to bring a unified solution of biometric fingerprint sensing and touchscreens using Atmel’s widely adopted maXTouch controllers.”

Interested in learning more about the partnership as well as these next-gen solutions? You can read the announcement in its entirety here.

Lock down your golf cart with ATtiny85

Some of us are lucky enough to live in communities where a typical commute is conducted within the breezy confines of a golf cart. Though, the security on a typical golf cart isn’t necessarily up to snuff.


A Maker by the name of “ramicaza” just happens to live within one of these communities and has a passion for technology. To enhance the security of his own golf cart, he installed a tinyAVR microcontroller-powered biometric fingerprint sensor that initiates his vehicle’s ignition.

Using an ATtiny85 MCU and a “GT-511C1″ fingerprint sensor from Sparkfun, the Maker created a system that enables a driver to simply scan their finger to start their cart. This simple Atmel-based controller then uses a relay to allow power to flow from the cart’s main battery to the motor. The system initiates when a custom-built switch cover is opened and then immediately displays a red LED light. Once the correct finger is scanned, the LED switches to green and the cart is ready to roll. To power down the cart, one more scan is needed and a relay powers down the vehicle. Cleverly, the circuit is designed so that if the cover is pressed while the power is on, the circuit remains active.

Ramicaza successfully replaced his cart’s ignition with home-brewed device and significantly bolstered the ‘cool factor’ of his four-wheeled ride! If you were planning on replicating this project, the Maker has shared his source code and sketches on GitHub that allows the ATtiny85 to communicate with the fingerprints scanner. “This is a sketch that allows the ATtiny line of microcontrollers to interface with the GT511-C1/3 fingerprint sensor from Sparkfun. The advantage of this sketch is that it requires no libraries and thus works on any board that can be programmed with the Arduino IDE. The sketch initializes the connection with the sensor, turns the sensors in-built LED on and continually attempts to capture finger scans. Once one is successfully captured it analyzes,” ramicaza notes.