Tag Archives: batteries

What will smartphones look like in 2020?

Thanks to Moore’s Law, electronic devices are increasingly packed with more power and functionality, improving our life qualities with more convenience, productivity, and entertainment. Just to put things in perspective, Steve Cichon of Trending Buffalo shows that an iPhone (assuming an iPhone 5S at the beginning of 2014, when his blog was written) can replace $3,054.82 worth of electronics sold in Radio Shack in 1991, according to a flyer post in The Buffalo News.

radioshackad

“It’s nothing new, but it’s a great example of the technology of only two decades ago now replaced by the 3.95 ounce bundle of plastic, glass, and processors in our pockets,” says Steve Cichon.

As cool as we think our smartphones are today, I dare to say that two decades later by 2035, when people compare their personal electronics (assuming they don’t use the term “smartphones” anymore!) against the current smartphone features, they would be amazed by how big, heavy and slow these electronics are today. If you still don’t get what I mean, take a look at this 1991 Sony Walkman Commercial, and try to recall how cool the Walkman was in 1991.

While I certainly do not have the crystal ball that tells me what kind of personal electronic devices people will be using by 2035, I would like to make a few guesses of what smartphones would look like in just 5 years, say 2020.

User Interface

I believe touchscreen [with touchscreen controllers] will still be the main user interface for smartphones by 2020. While Generation Z are called “digital natives,” I think kids who are born after Generation Z would be “touch natives.” Toddlers and young children playing with iPod Touch, iPhone and iPad today will attempt to touch all display interfaces as their way of interacting with electronics in the coming years. I also believe smartphone interfaces would expand beyond just touch, and there are two possible expansions within five years: gesture controls and voice commands.

Gesture control refers to hand or facial interactions with the smartphone.  Samsung’s Galaxy S4 (with Air View) and Amazon’s Fire Phone (with 4 corner cameras) made interesting attempts for enabling hand and facial gesture recognition, but unfortunately, these features were not very successfully adopted by consumers because they were hard to learn, limited by hardware capabilities, and unreliable or inconsistent to use. But smartphone OEMs will continue improve their designs, and smartphones will eventually be capable of reliably recognize our intentions by tracking our hand or eyeball motions, or facial expressions.

Voice command is widely popular today, but will become a lot more useful in five years. Think of Apple’s Siri, Google’s Google Now and Microsoft’s Cortana, as cloud computing becomes more artificial intelligent with more data and computational power, they will become more dependable for average consumers to adapt. I hope that by 2020, my daily commutes with Apple’s Siri will no longer be worse than talking to my 2-year old son — Siri will help me change FM radio channels or launch a Podcast via Carplay in my dashboard. I will also be able to ask Google Now to order a pizza for me (topped with bacon, pepperoni and sausage, of course) without directly talking to the pizza-shop guy. Google Now will tell me when the pizza might arrive (based on the traffic congestion conditions), and open the door for me through my Nest, which as a Bluetooth connection to my front door’s electronic lock.

Integration

Needless to say, smartphones will be further integrated come the year 2020. Smartphone integration will follow a much similar path as the PC’s integration, except it will take place A LOT faster. Integration doesn’t always mean electronic components will disappear; rather, it can also mean that more hardware performance is integrated into the device. Today’s leading smartphones are packed with a Quad- or Octa-core Application Processor, running between 1.3 to 2.5GHz. By 2020, I’m guessing that smartphone CPUs will be 8 to 16-cores, running between 2.5-4.0 GHz range, (they probably will eat today’s Intel Core i7, designed for high-performance PCs, for lunch.)with 8-10GB RAM and 500-750 GB of storage.

I also believe smartphones will integrate more hardware components for better “context-awareness.” Today’s leading smartphones are easily packed with 10 sensors — gyro, ambient light, accelerometer, barometer, hall sensor, finger scanner, heart rate monitor, among a number of others. I think more microphones (today’s camera usually has at least two microphones) and cameras (again, at least two today) will be packed into the devices to enable improved awareness — 4, 6 or even 8 microphones and cameras are quite possible by 2020. For instance, having multiple microphones enables listening from different positions inside the phone and at different frequencies (i.e. not only voice commands); in addition, it will allow the smartphone to determine its location, its surroundings (whether inside or out) how far it is away from the voice command and even how to improve noise cancellation. Also, having multiple cameras will allow the device to better track facial expressions (Amazon’s Fire Phone is a good example), to capture better 3D and panorama images, or to refocus photos by post-processing (hTC One M8 is a good example).

Further, component-level integration will continue to happen. With increasing applications processor power, the A/P will be able to take over many digital processing from discrete components inside the phone, although I think Sensor Hub will continue to drive low-power, context-awareness tasks while the A/P sleeps.

Display Technology

Do you envision 4K displays (i.e.3840 x 2160) on your smartphone? Today, Apple’s “Retina Display” in the iPhone 5S offers a 326 pixel-per-inch, and many new smartphone displays exceed that pixel density. Smartphone displays are increasing in sizes, moving from 3.2″ and 4″ just a few years ago to 4.7″, 5.2″, 5.5″ and even 6.4”. As the screen sizes increase, as will the display resolution, while keeping the high PPI density.

I think both LCD and AMOLED displays will continue to exist in 2020, as both technologies have their advantages and disadvantages for smartphone applications. From a consumer perspective, I would expect both types of displays to improve on resolution, color accuracy (for example, Xiaomi’s latest Mi4 display has a color gamut covering 84% of the NTSC range, and that’s even better than Apple’s iPhone 5S display), power consumption and thinner assembly allowing for slimmer industrial design.

As smartphones with 2K displays be introduced by the end of 2014, it isn’t unreasonable to say that 4K displays would be used in smartphones, perhaps by or even before 2020.  However, everything has a cost, and the extra pixels that our human eye cannot resolve will consume power from the graphic engine. Would you prefer to trade off some pixel densities with longer battery life? Personally, I think we do not need a 4K smartphone screen. (And yet, I may laugh at myself saying this when we look back five years from now.)

Battery Technology

The thirst for more power is always there. With increased processing capabilities, context-awareness and better display technologies, we can only assume that future smartphones will require more power than what they are carrying today. Today’s top-tier smartphones can package a battery around 3000 mAh. That’s plenty of juice for a day, but consumers always crave for longer battery life or more powerful smartphones with longer video streaming time. Luckily, research on new battery technologies have been increased, thanks to the explosion of portable electronics. I believe there are two types of technologies that will be available and improve our smartphone experiences by 2020:

Battery with higher density: Forbes recently reported that a group of researchers at Stanford University designed a new solution to increase the capacity of existing battery technology by 400%. This is just one of the promising researches we’ve seen in recent years that could one day be deployed for mass production in just a few years. For the same size of battery that lasts for a day of use in 2014, we can expect that smartphones will last for a week without charging by 2020. On the other hand, smartphone OEMs can also select to use a smaller size battery in the smartphone, and in exchange, use the extra room inside the smartphone to integrate other components and features.

Battery with rapid charging capabilities: A gadget-lover’s dream is to get a full-charge of their smartphones within 5 minutes of charging. Today, UNU’s Ultrapak battery pack can deliver a full charge to devices after just 15 minutes of charging itself up. This isn’t to say the technology is ready for smartphone integration, due to various reasons; however, we’re seeing smartphones adopting rapid charging technologies today (such as Oppo’s Find 7) and we should expect that smartphones will have a much shorter charge time thanks to various rapid-charging standards, such as Qualcomm’s Quick Charge 2.0. Several smartphone models have adopted this standard, including Xiaomi’s Mi3, Mi4, Samsung Galaxy S5 and hTC One M8.

Smartphone Camera

Last but certainly not least, I think smartphone cameras will certainly undergo many improvements by 2020. In fact, the smartphone camera performance is one of the features driving smartphone sales. A safe and simple prediction is that camera’s pixel density would continue to increase as CMOS sensor technology advances. Today, Microsoft’s Lumia 1020 has 41 megapixels, yet I don’t see an average consumer needing that many pixels even by 2020. Personally, I would be very happy with a camera that offers 15-20 megapixel — good photographers understand that pixel isn’t the only determining factor for a good camera, as it is only one of the key aspects.

I am not expecting the camera in a smartphone is capable of optical zooming. Instead, I’d much rather have a smartphone that’s light and portable. In fact, today’s smartphone cameras are pretty good by themselves, but there are always improvements can be made. I think the iPhone 5S cameras can be better with image stabilization, the Galaxy S4 camera can be better with faster start-up and better low-light sensitivity, and the hTC One M8 camera can be designed better with more pixels and improved dynamic contrasting.

Here is a my wishlist for a smartphone camera that I would carry around in 2020, and it’s perhaps not the “2020 Edition of Lumia 1020” camera:

  • 20 megapixel with Image Stabilization, perhaps a wide, f/1.0 aperture
  • HDR, Panorama view
  • Excellent white balance and color accuracy
  • Excellent low-light sensitivity
  • Full manual control
  • Extremely short start-up latency, and fast and accurate auto-focus
  • 4K video recording @ 120fps (with simultaneous image recording)

I may not be a fortune teller, but there you go… that’s my prediction for what a smartphone will look like in the year 2020. Would you be interested in spending your hard-earned dough in 2020 for a smartphone with the above spec? Everyone has an opinion on what the future entails, and my idea of a smartphone five years from now are as good as those of the readers of this blog. I think we would all agree that the advancements in technology will continue to improve the quality of lives. As smartphones become more personal and depend ended upon, we’ll all reap the benefits from the smartphone evolution.

 

Nano tech could store power in cables, clothes

Professor Jayan Thomas and Ph.D. student Zenan Yu have developed an innovative method of transmitting and storing electricity in a single lightweight copper wire.

According to UCF Today (University of Central Florida), the technology could ultimately allow individuals to power their MP3 players, smartphones and tablets using the fabric of their jackets. 

Indeed, by being able to store and conduct energy on the same wire, heavy, space-consuming batteries may very well become an outdated remnant of the past.


“It’s an interesting idea. When we did it and started talking about it, everyone we talked to said, ‘Hmm, never thought of that. It’s unique,'” said Thomas. 

”We take it step by step. I love getting to the lab everyday, and seeing what we can come up with next. Sometimes things don’t work out, but even those failures teach us a lot of things.”

As Thomas notes, while copper wire may be the starting point, special fibers could eventually be developed with nanostructures to conduct and store energy.

The current model involves a single copper wire equipped with a sheath of nanowhiskers grown on the outer surface of the copper wire. 

The whiskers were subsequently treated with a special alloy, which created an electrode.

However, two electrodes were required to handle the energy storage, so the researchers created another by wrapping a thin plastic sheet around the whiskers using a metal sheath (after generating additional nanowhiskers). 

The layers were then glued together with a special gel. Because of the insulation, the inner copper wire retains its ability to channel energy, with the layers around the wire independently storing powerful energy.

Simply put, Thomas and his team managed to create an effective supercapacitor on the outside of the copper wire.

Although more research is required, the technique has the potential to be adapted for a wide range of applications. For example, flexible solar cells paired with the above-mentioned fibers could be used to design a jacket capable of powering various electronic devices.

Nuvation talks Atmel and batteries at EELive! 2014

Nuvation CEO Mike Worry is at Atmel’s EELive! 2014 ToT booth presenting a series of Tech Talks about his company’s EV Battery Management System. His presentations have been covered by a number of prominent journalists, including Steve Taranovich of EDN.

“We’e seen enough instances of battery disasters occurring over the last few years in our industry. Batteries have a tremendous amount of energy within and if not properly handled and charged/monitored can be dangerous,” writes Taranovich.

“With chemistries such as Lithium, each cell must have its voltage monitored and balanced. This not only extends battery life, but prevents tragedies. [This is why] Nuvation has expertly developed their customizable battery Management System (BMS) that can handle 10s to 1,000s of cells. The system is easily made compatible with lithium, nickel, silver based and other battery chemistries.”

In terms of the Tank Controller, Nuvation selected Atmel’s ATSAM4E8C, a 32-bit ARM Cortex-M4 controller to power a wide range of features, including Ethernet, UART, CAN, current shunt and optically-isolated GPIO.

As Taranovich notes, the Tank Controller is also equipped with an optically-isolated interface to battery pack management (PackMan) strings.

“The system handles soft-start, main start and emergency disconnect and controls the charging system to protect the battery,” says Taranovich.

Meanwhile, the PackMan, or BMS slave utilizes Atmel’s ATA6870N, a Li-Ion, NiMH battery measuring, charge balancing and power-supply circuit.

This IC is tasked with measuring all cell voltages simultaneously – and balancing cells with higher voltage. 

Each IC is capable of monitoring 6 cells, with a daisy chain configuration supporting up to 16 PackMan board or 96 stacked cells.

“Nuvation’s BMS must deal with the balance/imbalance of a battery pack. It looks at the state-of-charge (SOC) between cells in the pack,” Taranovich adds. “The usable SOC of pack is determined by the lowest energy cell and then the BMS has the task of balancing these cells accurately and quickly without overcharging or overheating the cell.”

Interested in learning more? You can check out Nuvation’s official site here, while the full text of Steve Taranovich’s “Nuvation at EELive: The Fun in Electronics Design” can be read on EDN here.

Batteries with potential 40-year life

I just saw an ad for a Tadiran battery that claims a 40-year life. This is for a primary battery, not a rechargeable. That is based on the 1% per year self-discharge rate. So the math is pretty basic— 40 years at 1% per year and that is more than 50% charge remaining to do your bidding. Now the ad, being marketing and all, does not say if its 1% of rated capacity per year, or 1% of remaining capacity per year. You should have plenty of charge left if you figure your power budget with a factor of two over rating to allow for that self-discharge.

Tadiran-lithium-thionyl-chloride-battery

Tadiran’s previous lifetime champ was also (Li/SOCl2 ) cells. They would claim 15-year lifespans for those. SAFT makes lithium thionyl chloride cells too. I assume Tadiran have made further improvements to get to such a low self-discharge rate for this line, which they call lithium inorganic. But I note the Tadiran ad has the words “…in certain applications.”  You see, they can’t tell where or how you use the batteries. If you leave flux all over the board so that there are leakage paths, you won’t get the 40 year life. If you run them at hot or cold temperatures, you won’t get the 40 year life. If you take out the current in high pulses instead of a gentle steady current, you won’t get the 40-year life. It is not Tadiran’s fault. They have to give you the optimum spec— that is for a battery with no leakage paths other than its own case. And measured in a comfortable temperature in a dry environment.

When I was at EDN I wrote about the 15-year batteries. An alert reader notified me of a scandal in Houston Texas since the gas meters needed new batteries much sooner than expected. Once again, it was not the battery maker’s fault. Houston Texas is extremely humid, almost tropical. The batteries in the meters were exposed to this humidly and high temperature and their life was much shorter.

I designed the power system for an automotive diagnostic tool when I consulted at HP. I thought I had all the battery quiescent currents figured out in a neat little spreadsheet. Then I prototyped the design. The leakage current was much higher than my spreadsheet showed. Turns out that battery voltage was flowing through the body diode of a back-to-back FET and then into a gate pull-down resistor. I used a 1meg resistor, but 12 volts into 1 MΩ resistor is still 12μA. That is way more than the 200nA memory retention current of an AVR XMEGA in shutdown, so don’t let some power supply leakage path screw up your battery life calculations like I did.

In 2007 I did a follow-on post about smart meter batteries. The broken first link in it is the EDN article I linked above. So just remember, it is your job, not Tadiran’s, to insure that the battery life is what you expect in a smart meter. Tadiran can give you the battery, and Atmel can give you the MCU and smart meter ICs, but you have to verify the leakage and current consumption in your exact application, running your exact code, with your exact manufacturing methods. My buddy Eric Schlaepfer, now at Google, was over at Maxim when some customer contacted him and called Maxim liars since the customer was getting much greater power consumption on one of Maxim’s micro-amp supervisor chips. It turns out the customer was letting the PCB get contaminated with sweaty conductive fingerprints in assembly. The leakage current through those fingerprints on the PCB was passing way more current than the integrated circuit.

So brush up on the Keithley low-level measurement handbook (pdf), so you can measure those nanoamperes. And be sure to test your system in temperature and humidity chambers that simulate the real world. And then take measurements in the field to validate all your assumptions. Then and only then will you get 40-year battery life in your products.

Optimizing charge cycles and battery life

Bits & Pieces has been on a roll this week with an automotive theme in honor of the latest additions to Atmel’s touch family: the mXT336S and mXT224S. In this article, we’re going to take a closer look at how Atmel optimizes automotive charge cycles and battery life with its MCUs.

As automotive enthusiasts know, Li-ion technology is currently the first choice for modern high-performance batteries. To be sure, Li-ion batteries are up to 30 percent smaller and 50 percent lighter than conventional NiMH batteries – yet manage to store significantly more energy.

However, while the batteries do offer concrete advantages in terms of size, weight, recharge speed and resistance to memory effects, Li-ion has a higher cost compared to other battery types. Of course, this can definitely be improved by using a battery management system like Atmel’s which optimizes battery performance.

“Our Li-ion battery management solution offers high accuracy analog measurement functions in combination with efficient active cell balancing ensuring optimum usage of battery capacity,” an Atmel engineering rep told Bits & Pieces. “Specifically, the megaAVR, ATmega32HVE2 and ATmega64HVE2 microcontrollers (MCUs) can be used to improve the performance and longevity of 12V standard lead-acid batteries.”

As the engineering rep notes, the above-mentioned MCUs are designed for intelligent battery sensor applications – with the devices determining the state of charge and state of health for 12V standard lead-acid batteries by measuring the battery voltage, current and temperature.

“For cars with idle-stop-go function, this feature is mandatory to retain sufficient battery energy for a guaranteed engine start,” the engineering rep added. “Combined with the Atmel ATA6870 Li-ion battery monitor IC, it forms an ideal system solution for replacing 12V standard lead-acid batteries with Li-ion batteries.”

Additional key features of an Atmel-powered battery management system and components include:

  • Active balancing – The industry’s first to feature active cell balancing for high cell count Li-ion batteries to prevent energy loss.
  • Maximum safety – Highest accuracy due to simultaneous cell voltage measurement of the cells in the entire battery stack leading to precise state-of-charge and state-of health calculations.
  • Smart sensing – Allows engineers to measure the battery voltage, current and temperature with up to 18-bit accuracy.
  • Valuable development tools – PC-controlled development kits help devs easily build a battery management system and get the most of the battery management devices.

Interested in learning more? Detailed information about using Atmel’s powered system can be found here.