Tag Archives: AVR1636 reference design

Building a three-phase PMSM sensorless FOC with Atmel

A three-phase Permanent Magnet Synchronous Motor (PMSM) sensorless FOC (Field Oriented Control) is typically found in a number of home appliances such as washing machines, dishwashers, dryers, refrigerators, air conditioners and pumps.

atmelxmegamotor

Key design considerations for a three-phase PMSM sensorless FOC include power efficient and acoustically quiet motor operation to meet governmental efficiency standards, low BOM cost and a compact, scalable FOC form factor.

“And that is precisely why Atmel’s XMEGA AVR (D or E series), coupled with our AVR1636 reference design, offers developers versatile integration capabilities along with comprehensive application support – facilitating FOC implementation that allows power efficient and acoustically quiet motor control application,” an Atmel engineering rep told Bits & Pieces.

“More specifically, there are three 16-bit timer/counters with up to four output compare or input capture channels, a high-resolution extension and advanced waveform extension (AWeX), an 8-channel Event System which allows peripherals to directly send, receive and react to synchronous or asynchronous events in a short, guaranteed response time.”

Additional integrated features include a feature-rich 300KS/s 12bit ADC with programmable gain amplifier up to 64x – with temperature, supply voltage and reference inputs; EEPROM for configuration parameters storage; two USART, one SPI and one I2C Serial Interfaces for system communication.

In terms of software and application support, Atmel offers AVR1636 reference design hardware; a firmware and PC configuration utility; AVR1610 pre-certified Class B library and design guide; Atmel Studio 6; Atmel Software Framework; Atmel Gallery; and free software libraries of production-ready source code.

Interested in learning more about building a three-phase PMSM sensorless FOC with Atmel’s AVR XMEGA? Be sure to check out some of the links below.