Tag Archives: Avant Car

For I have seen the shadow of the curved touchscreen

Last year’s CES was the modern technology equivalent of the voyage of Ferdinand Magellan, proving beyond any shadow of doubt displays no longer can be thought of as only flat. While the massive curved 105-inch TVs shown by LG and Samsung drew many gawkers, the implications of curved touch displays are even wider.

At DAC 50 there were more than a few chuckles and some mystified looks when Samsung’s Dr. Stephen Woo spent a lot of his keynote address highlighting flexible displays as one of the challenges for smarter mobile devices (spin to the 27:41 mark of the video for his forward-looking comments). I think if we had polled that room at that second, there would have been two reactions: 1) yeah, right, a flexible phone, or 2) hmmmm, there must be something else going on. His comments should have provided the clue the flat display theory was about to dissolve:

Is there any major revolution coming to us? My answer to that is yes. I’m afraid that we as EDA, as well as the semiconductor industry, are not fully appreciating the magnitude of the revolution.

Woo showed the brief clip from CES 2013 introducing the first Samsung flexible display prototype, hinting that while exciting, it is still a ways from practicality. Why? He went on to explore the rigid structure of the current high volume smartphone – flat display, flat and hard board with flat and hard chips, and a hard case. I have some unpleasant recollections of trying chips on flex harnesses in the defense industry, and the problems become non-trivial with bigger parts and shock forces coming into play, not to mention manufacturing costs.

We might be getting thrown off by the limiting context of a phone as we know it. A gently curved but still fixed display poses fewer problems in fabrication using current technology. Corning has announced 3D-shaped Gorilla Glass, and Apple, LG, and Samsung are all chasing curved display fabrication and gently curved phone concepts today.

The real possibilities for smaller curved displays jump out in the context of wearables and the Internet of Things. The missing piece from this discussion: the touch interface. Flexible displays present a challenge well beyond the simplistic knobs-and-sliders, or even the science of multi-touch that allows swiping and other gestures. Abandoning the relative ease of planar coordinates implies not only smarter touch sensors, but algorithms behind them that can handle the challenges of projecting capacitance into curved space.

Illustrating the potential for curved displays with touch interfaces in automotive design, AvantCar debuted at CES 2014. Courtesy Atmel.

 

Atmel fully appreciates the magnitude of this revolution, and through a combination of serendipity and good planning is in the right place at the right time to make curved touchscreens for wearables and the IoT happen. With CES becoming an almost-auto show, it was the logical place to showcase the AvantCar proof of concept, illustrating just what curves can do for touch-enabled displays in consumer design. (Old web design axiom, holds true for industrial design too: men tend to like straight lines and precise grids, women tend to like curves and swooshes – combine both in a design for the win.)

The metal mesh technology in XSense – “fine line metal” or FLM – means the touch sensor is fabricated on a flexible PET film, able to conform to flat or reasonably curved displays up to 12 inches. XSense uses mutual capacitance, with electrodes in an orthogonal matrix, really an array of small touchscreens within a larger display. This removes ambiguity in the reported multiple touch coordinates by reporting points independently, and coincidentally enables better handling of polar coordinates following the curve of a display using Atmel’s maxTouch microcontrollers.

Utilizing fine line metal - copper etch on PET film - Atmel's XSense touch sensor is able to conform to gently curved displays.

 

Now visualize this idea outside of the car environment, extended to a myriad of IoT and wearable devices. Gone are the clunky elastomeric buttons of the typical appliance, replaced by a shaped display with configurable interfaces depending on context. Free of the need for flat surfaces and mechanical switches in designs, touch displays can be integrated into many more wearable and everyday consumer devices.

Dr. Woo’s vision of flexible displays may be a bit early, but the idea of curved displays looks to be ready for prime time. The same revolution created by projected capacitance for touch in smartphones and tablets can now impact all kinds of smaller devices, a boon for user experience designers looking for more attractive and creative ways to present interfaces.

For more on the curved automotive console proof of concept, check out Atmel’s blog on AvantCar.

What do you think of the emergence of curved displays and the coming revolution in device design? How do you see curved touchscreens changing the way industrial designers think of the user interface on devices? Looking out further, what other technological improvements are needed?

This post has been republished with permission from SemiWiki.com, where Don Dingee is a featured blogger. It first appeared there on January 10, 2014.

The Microcosm of IoT and connected cars in Formula 1 (Part 2)

…Continued from The Microcosm of IoT in Formula 1 (Part 1)

The typical F1 racing car embodies the sophisticated engineering — designed to win and only but win. The racing platform itself (both team, driver, and car) executes every deductive decision vetted against one pillar called “performance.”

Here’s the quantified car and driver. At 1.5 gigabytes of data wirelessly transmitted per connected car during a race, the ECU (electronic control unit) generates 2-4 megabytes per second of data from the F1 cars’ 120+ various sensors, which also include the drivers’ heartbeat and vitals.  Now let’s add the upgraded network fiber deployed across each race of the year set forth to ensure every turn and tunnel can stream and broadcast this telemetry and data.

Source: ESPN Formula 1 News

Source: ESPN Formula 1 News Computers, Software, and BI [Visualization and Data]

These embedded systems comprise of technology not limited to neither automotive nor Formula 1; embedded systems are used in the aero industry, marine, medical, emergency, industrial, and in the larger home entertainment industry. Therefore, advanced technology, little by little take place in the devices that we use every day. There are many useful products that are used in the industry — even though they first surfaced — as an application in F1 racing [the proven, moving lab].

F1 electronic devices used may be generally regarded in groups [using embedded systems] by the following:

Steering Wheel Display, Interface Unit, Create a Message, Electronic Control, Telemetry, Speed, Interface Unit, EV, Regenerative Power, Ignition Coil, Management System, Access to Pitstop, Power Source, Gryro Stabilizer, Humidty, Triggering Device, Acceleration, Rainy Lights, Air Resistance, Linear Movement, Angular positions, Lambda probe, Liquid pressure, Tire pressure, Temperature, Torque, Signaling, Server, Computer, Display Data (BI), Software

igure 4: Steering Wheel of Sauber F1 Source - nph / Dieter Mathis/picture-alliance/dpa/AP Images

Source – nph / Dieter Mathis/picture-alliance/dpa/AP Images

Here is an example Formula 1 steering wheel. It’s the embedded electronic enchilada, serving information [resulting from actuators and sensors] to a driver [on a need to know basis]. The driver coincides his race style and plan [tire management, performance plan, passing maneuvers, aggressive tactic] to every bit of data and resulted in a formatted display. These are literally at his fingers.

What are some of the F1 connected car implications?

Drivers in Formula 1 have access to functionality through their race platforms, which helps improve speed and increase passing opportunities. The DRS (Drag Reduction System) helps control and manage moveable rear wing. For a driver, in conjunction with Pirelli tires and KERS, it has proven successful in its pursuit of increasing overtaking which is all good for the fan base and competitive sport. The DRS moves an aerodynamic wing on a Formula 1 race car. When activated via the driver’s steering wheel, the DRS system alters the wing profile shape and direction, greatly reducing the drag on the wing by minimizing down force [flattening of the wing and reduce drag by 23%.]. Well, now coupled with the reduction in drag, this enables faster acceleration and a higher top speed while also changes variably the driving characteristics and style for over-taking. These are called driver and protocol adjustable body works.

How it works? Like all movable components of an F1 pure breed, the system relies on hydraulic lines tied to embedded control units, and actuators to control the flap. Managed by a cluster of servo valves manufactured by Moog, the Moog valves are interfaced via an electronic unit receiving a secure signal from the cockpit. Of course, this all happens under certain circumstances. When two or more cars pass over timing loops in the surface of the track, if a following car is measured at less than one second behind a leading car it will be sent a secure signal [encrypted then transmitted via RF] that will allow its driver to deploy the car’s active rear wing. Since the timing loops will be sited after corners, drivers will only be able to deploy the active rear wing as a car goes down a specific straight paths in many tracks.  In essence, the modern day Formula 1 car is a connected platform dynamically enabled to produce a stronger driver, appealing more to both driver performance and fan engagement.

Moveable aerodynamic components are nothing new. But still, for an Airbus A320 or even a modern UAV or fighter jet, there is a huge amount of space to work in. On a grand prix car, it’s quite different. This is also achieved in a very hyper fast, mobile, and logistically drained environment of Formula 1, where performance, equipment, and configuration are a demanded at all times. Next we’ll summarize how this relates to the broader connected car concept…

F1 showcases the finer elements of connected cars, making it possible

Just discussed, cars in general are going to become literally the larger mobile device. They will be connected to all sorts of use-cases and applications. Most importantly, we are the drivers, and we will become connected drivers. Both driver and connected car will become more seamless.

The next phase where smart mobility is going to change how we do and behave after we before or after we reach our destination. In Wired Magazine’s column named Forget the Internet of Things: Here Comes the ‘Internet of Cars’, Thilo Koslowski discusses the improvements and why connected cars are inevitably near. Thilo, a leading expert on the evolution of the automotive industry and the connected vehicle says, ““Connected vehicles” are cars that access, consume, create, enrich, direct, and share digital information between businesses, people, organizations, infrastructures, and things. Those ‘things’ include other vehicles, which is where the Internet of Things becomes the Internet of Cars.”

Yes, for the connected car, there still exist a number of technology challenges and legislative issues to build out a successful broader impact. Like Formula 1, we attribute many of its tech surfacing into main stream markets [previously discussed in part 1]. This next automotive revolution stems on current and related industry trends such as the convergence of digital lifestyles, the emergence of new mobility solutions, demographic shifts, and the rise of smartphones and the mobile internet.Thilo further claims “As these vehicles become increasingly connected, they become self-aware, contextual, and eventually, autonomous. Those of you reading this will probably experience self-driving cars in your lifetime — though maybe not all three of its evolutionary phases: from automated to autonomous to unmanned.”

connected-sensors-microcontrollers-atmel-iot-new-services

Actually, a consumer shift is happening. Consumers now expect to access relevant information ranging from geo location, integration of social data, way points, destination, sites of interest, recommendations, ones digital foot print integrated into the “connected car” experience. The driver will become connected with all the various other touch points in his/her digital life. Moreover, this will happen wherever they go including in the automobile. Thilo even goes to as far as claiming, “At the same time, these technologies are making new mobility solutions – such as peer-to-peer car sharing – more widespread and attractive. This is especially important since vehicle ownership in urban areas is expensive and consumers, especially younger ones, don’t show the same desire for vehicle ownership as older generations do.

To be successful, connected vehicles will draw on the leading technologies in sensors, displays, on-board and off-board computing, in-vehicle operating systems, wireless and in-vehicle data communication, machine learning, analytics, speech recognition, and content management. (That’s just to name a few.) “

All together, the build out of the connected car, [aspects proven in F1], contributes considerable business benefits and opportunities:

  •  Lowered emissions & extended utility of EVs — remote Battery swap stations, cars as (Internet as a service), peer to peer car sharing, cars with payment capabilities, subscription of energy, vehicles as power plants back to the grid, KERS, and other alternative fuel savings displaced with electrical motors and emerging consumer conscience accountability to clean energy
  • New entertainment options — countless integration opportunities with mobile (M2M and IoT) ecosystem of value added connected Apps and mobile services (i.e. Uber disrupted an old traditional market)
  • New marketing and commerce experiences — countless use-cases in increasing the engagement and point of arrival offerings
  • Reduced accident rates — albeit found in crash avoidance systems, location based services, driver monitoring, emergency response automation, early warning automation, telemetry to lower insurance cost, or advanced assisted driving
  • Increased productivity — gains achieved via efficiencies/time management towards more sustainable commutes
  • Improved traffic flow — efficient system merging various datasets to advance navigation to minimize and balance capacity or re-route traffic

Sensors-connected-IoT-Car

Personalization-connected-driver Like all technology, old ideas will progress, evolve to newer platforms to bring new functionality that can adapt to the latest popular ecosystem [simply being mobile & connected]. Connected cars will expand automotive business models augmenting new services and products to many industries — retail, financial services, media, IT, and consumer electronics. The traditional automotive business model can be significantly transformed for the betterment of the consumer experience. Today, emphasis is placed much purely on the  output, sale, and maintenance of a vehicles.  Later on, once connected cars reach market maturity with wide adoption, companies will focus on the sum of business opportunities [value add chain ecosystem] leveraged from the connected vehicles and the connected driver.

Are you a product maestro or someone with domain expertise for your company seeking to improve processes or developing value added services to build IoT enabled products? Perhaps, you are in a vertical intended to accelerate business and customer satisfaction? With all this business creation stirring up, it’s quite clear the connected car platform will open new customer connected services or product enhanced offerings.

That all being said, we are already in this moment of the future with Formula 1. Connected cars will eventually come. It’s just a matter of time…

(Interested in reading more? Don’t forget to check out Part 1.)