The Row-bot is a self-powered robot that can eliminate pollutants and contaminants from water.
Don’t expect to find the tiny robot pictured below swimming in any bathtub or pool anytime soon; in fact, you won’t probably won’t find it in any clean body of water. That’s right, the Row-bot thrives on pollution — the more, the merrier.

Inspired by beetles and other insects like the water boatmen bug who feed off nutrients found in the dirty water it swims in, researchers at the Bristol Robotics Laboratory have developed an autonomous machine with hopes of eliminating pollutants and other dangerous contaminants.
When it is hungry, the Row-bot opens its soft robotic mouth and rows forward to fill its microbial fuel cell (MFC) stomach with nutrient-rich dirty water. It then closes its mouth and slowly digests the nutrients, before using the bio-degradation of organic matter to generate electricity via bio-inspired mechanisms. That same electrical energy keeps the Row-bot propelling to a new location for another gulp of H2O.
In order to produce the most efficient movement possible, the researchers tried to mimic the water boatman whose legs are covered by swimming hairs that span laterally to maximize drag during the power stroke and collapse to minimize drag during the recovery stroke. But whereas the insect has hair-covered legs, the Row-bot’s propulsion mechanism is comprised of a 3D-printed paddle powered by a tiny 0.75 watt brushed DC motor.

Row-bot consists of a 3D-printed composite structure with a rigid frame supporting an elastic membrane — each paddle is stretched out to increase the paddle surface area during the power stroke. The membrane has a hinge that changes the angle of attack on the part of the paddle that remains underwater during the recovery stroke to reduce its frontal area, and therefore, its drag.
This robot has plenty of practical applications, such as remote sensing and environmental monitoring. Row-bot can be used in any kind of water, from fresh to salt to waste water. For instance, they can be thrown in a polluted pond and rove for months, while feeding on the filth and cleaning as they go.
“The work shows a crucial step in the development of autonomous robots capable of long-term self-power. Most robots require re-charging or refuelling, often requiring human involvement,” explains Jonathan Rossiter, Professor of Robotics at the University of Bristol and BRL.
Just think of the possibilities… Head over to the Row-bot’s official paper here to read more.
Like this:
Like Loading...