Tag Archives: ATSAMD21J18A

Zymbit wants to accelerate IoT development


Get your real-world Internet of Things ideas to market in days, not months. 


As the next frontier of the Internet approaches, the IoT represents a compelling opportunity across a staggering array of applications. That’s why the team behind Zymbit has developed an end-to-end platform of hardware and software devices that will enable Makers, engineers and developers alike to transform their ideas into real-world products in blistering speed.

Zymbit

In an effort to deliver secure, open and interactive gadgets for our constantly-connected era, Zymbit is hoping that latest set of solutions will help accelerate adoption and interface with our physical world in a more secure, authenticated manner. The company — who we had the chance to meet at CES 2015 and will be on display in our Maker Faire booth — recently unveiled its Zymbit 1 (Z1), which is being billed as the first fully-integrated piece of IoT hardware that provide users with local and remote live data interaction, along with a low-power MCU, battery-backed operation.

“Z1’s motherboards incorporate some of the latest secure silicon from Atmel, providing accelerated processing of standard open security algorithms. A separate supervisor MPU takes care of security, while you take care of your application,” explained Zymbit CTO Alex Kaay.

v2_pcb_spacemodel_x37k_torender_x00.26_Web

Based on the Atmel | SMART SAM D21, the Z1 motherboard is electronically robust with enhanced security provided via an ATECC108 crypto engine and an ATWINC1500 Wi-Fi controller — meaning, no additional parts are necessary. Ideal for those developing next-gen IoT projects, the modular board is super customizable and compatible with Atmel Xplained Pro wingboards, Arduino shields, Raspberry Pi B+, as well as ZigBee, cellular and POE options. The Zymbit team has even implemented discretely controlled blocks to simplify coding and to secure remote device management, while advanced power management supports battery, solar and POE operations.

The Z1 integrates all of the key components required to support a generation of global IoT applications. This includes easily transitioning between Arduino, Atmel and Raspberry Pi designs, integrated open software tools for seamless innovation, as well as a choice of wireless communication. For instance, Makers can design and implement their programs using the Zymbit’s Arduino Zero app processor and take advantage of a vast number of Arduino shields. Or, developers can connect their Raspberry Pi to utilize the various Zymbit services via SPI bus, allowing their B+ module to interact with a wide-range of “things.”

Y1-Block-Detail-Perspective

The unique Zymbit architecture delivers three key pillars of security: authenticated data source with 72-bit ID serial number, protected data transmission with SHA 256 and private data transmission via a Wi-Fi embedded AES engine. This is accomplished through a dedicated hardware crypto engine that ensures only trusted data is exchanged between devices.

At the heart of Z1’s operation lies a network/Linux CPU, the Atmel | SMART SAMA5D4 MPU, tasked with its secure communication. Meanwhile, its security processes run within a supervisory, ultra low-power Atmel | SMART SAM L21 MCU, separately from its SAM D21 Cortex-M0+ I/O application MCU. This hardware is all housed inside a dynamically-constructed case, which features standard expansions and mounts perfect for any consumer, commercial or industrial applicable IoT product.

PubSub-Graphic-2

Adding to its already impressive list of capabilities, Zymbit comes with a remote manager that makes it easy to connect and manage gizmos both securely and with transparency. This service enables users to SSH to their devices, whether they are on your desk or across the country. Publishing through Zymbit’s Pub/Sub Engine lets developers collect and share data one-to-one or one-to-many, with or without subscriber authentication. As you can imagine, this opens up an assortment of project possibilities, which range from changing Philips Hue color lighting with data streams to monitoring key parameters of a refrigeration system.

“We are providing some standard dashboard widgets that allow you to quickly view your device performance metrics and data-channels. Initially we are supporting time series charting, together with plugin metrics for Raspberry Pi, and Arduino Yún,” the team writes.

Interested in learning more? You can stay up-to-date with the Zymbit team’s progress here, watch our latest interview with one of the company’s co-founders below, and swing by our booth at Maker Faire Bay Area!