Tag Archives: Atmel Studio 6

Vegard Wollan talks AVR chips and tools

While some of my earlier segments with Vegard explored the history of AVR, this video with its co-inventor addresses its product line and the tools one would use to write the firmware for the 8-bit chips.

Vegard touches on the availability of AVR chips in DIP (dual in-line) packages. These larger packages are loved by Makers and hobbyists since they are easy to prototype with. You can solder to the pins without a microscope and it is easy to make changes. They are also well-suited to installing in sockets, so you can replace them, or yank them out and program them in a separate programmer board.

Atmel-DIP-package

Atmel still makes parts in the older DIP package, loved by hobbyists and Makers alike.

In the interview, Vegard refers to the ball grid array, commonly referred to as BGA by us acronym-loving tech people. BGAs are extremely small, just a little bigger than the silicon die itself. They also tend to transfer heat out of the die effectively, but that is rarely a factor in AVR chips since they are so low power. The headache with BGA chips is that you need an IR reflow oven to solder them on a board. Now, my buddy Wayne Yamaguchi has figured out a toaster oven will get the job done, just don’t toast any bread in it after you put a lead-soldered board into it.

Atmel-BGA-package

Atmel parts in BGA packages are very small, but take special inspection and rework equipment.

The real headaches with BGA packages are rework and inspection. To replace the chip, you would need a camera mounted hot-air rework station from Metal/OKI; in order to make sure it is soldered correctly would require an X-ray machine (no, I am not kidding) to see that all the balls have sweated onto the pads under the chip. It helps to use gold-immersion finished circuit boards since they tend to be flatter than HASL (hot air solder-leveled) boards. However, if you are making some leading-edge tiny consumer product, all these prototyping and QC hassles are well worth it to get the smallest size possible.

Metcal-OKi-Scorpion-hot-air-rework

To remove and resolder a BGA on your circuit board, you need to use a high-dollar camera equipped hot-air station like the Metcal Scorpion from Oki.

Vegard confirmed that Atmel uses the AVR 32-bit UC3 core in our touch controllers and mouse controller products. As you will see in the video above, we then went on to discuss Atmel’s legacy of providing really inexpensive demo boards and development tools.

Vegard-Wollen_Paul-Rako_AVR-demo-board

Vegard Wollan smiles with pride as I show him an old demo board I used in 1999.

I also dragged out the actual AVR ICE 200 in-circuit emulator (ICE) I used in 1998, to design a point-of-sale terminal (note I misspeak in the video, calling it an STK200). The remarkable thing was this system would emulate an AVR chip in-circuit, and it only cost 200 dollars, back in an era when Intel Blue-Box 8051 systems were 50 grand.

Vegard-Wollen-smiling-at-the-STK200

Vegard Wollan really beams as I describe the 200-dollar Atmel AVR ICE 200, that got my startup off to a fast start in 2001.

To conclude the segment, Vegard Wollan shares how the Atmel Studio 6 integrated development environment is a high-quality software tool to develop your application, and works with AVR 8- and 32-bit parts as well as Atmel ARM-core microcontroller chips. When you add Atmel Gallery, Atmel Spaces, and the Atmel Software Framework (ASF), Atmel Studio becomes an integrated development platform (IDP). And, don’t forget you can get Atmel demo hardware through our distributors or the Atmel Store.

 

Atmel celebrates 50 billion with ARM

ARM – which employs over 2,000 people around the globe – has billions of RISC-based processors in the wild and powers approximately 95% of the world’s smartphones. Recently, the British company marked a major milestone: 50 billion ARM-powered chips shipped.

Commenting on the milestone, Reza Kazerounian, Senior Vice President of Microcontrollers at Atmel, noted that ARM helps embedded developers significantly accelerate the development cycle by offering access to standard cores and an extensive ecosystem, including software and reference designs.

Kazerounian also said the next 100 billion chips will likely be led by intelligent connectivity, primarily in the context of the Internet of Things (IoT).

As we’ve previously discussed on Bits & Pieces, Atmel offers an extensive portfolio of microcontrollers (MCUs) and microprocessors (MPUs) based on the world’s most popular 8- and 32-bit architectures: Atmel AVR and ARM. Indeed, Atmel’s two decades of microcontroller leadership and innovation include many industry-firsts:

  • The first Flash microcontroller, the first ARM7-based 32-bit Flash microcontroller
  • The first 100nA microcontroller with RAM retention
  • The first ARM9-based Flash microcontroller

“In order to simplify the embedded design process, we’ve meticulously built a robust ecosystem around our ARM microcontrollers,” an Atmel engineering rep told Bits & Pieces. ”Meaning, Atmel offers a wide range of software tools and embedded software that support leading operating systems, along with low-cost evaluation kits.”

In addition, Atmel’s flexible and highly integrated ARM-based MCUs are designed to optimize system control, user interface (UI) management and ease of use. That’s why our ARM Cortex-M3 and M4 based architectures share a single integrated development platform (IDP): Atmel Studio 6. This platform offers time-saving source code with more than 1,600 example projects, access to debuggers/simulators, integration with Atmel QTouchtools for capacitive touch applications and the Atmel Gallery online apps store where embedded software extensions can be downloaded.

Meanwhile, Atmel ARM-based MPUs range from entry-level devices to advanced highly-integrated devices with extensive connectivity, refined interfaces and ironclad security.

“Whether you are working on new, existing or legacy designs, a wide range of Atmel ARM-based devices provides the latest features and functionality. These devices also feature the lowest power consumption, a comprehensive set of integrated peripherals and high-speed connectivity,” the engineering rep added.

Interested in learning more about Atmel’s extensive ARM portfolio? You can check out our ARM MCUs here and our ARM MPUs here.

Celebrating 50 billion chips with ARM



ARM – which employs over 2,000 people around the globe – has billions of RISC-based processors in the wild and powers approximately 95% of the world’s smartphones. Recently, the British company marked a major milestone: 50 billion ARM-powered chips shipped.

As you can see in the infographic above, 20% of the ARM chips are slated for embedded applications, including automotive, touch-screen controllers, industrial equipment, connectivity and smartcards.

As we’ve previously discussed on Bits & Pieces, Atmel offers an extensive portfolio of microcontrollers (MCUs) and microprocessors (MPUs) based on the world’s most popular 8- and 32-bit architectures: Atmel AVR and ARM. Indeed, Atmel’s two decades of microcontroller leadership and innovation include many industry-firsts:

  • The first Flash microcontroller, the first ARM7-based 32-bit Flash microcontroller
  • The first 100nA microcontroller with RAM retention
  • The first ARM9-based Flash microcontroller

“In order to simplify the embedded design process, we’ve meticulously built a robust ecosystem around our ARM microcontrollers,” an Atmel engineering rep told Bits & Pieces. ”Meaning, Atmel offers a wide range of software tools and embedded software that support leading operating systems, along with low-cost evaluation kits.”

In addition, Atmel’s flexible and highly integrated ARM-based MCUs are designed to optimize system control, user interface (UI) management and ease of use. That’s why our ARM Cortex-M3 and M4 based architectures share a single integrated development platform (IDP): Atmel Studio 6. This platform offers time-saving source code with more than 1,600 example projects, access to debuggers/simulators, integration with Atmel QTouchtools for capacitive touch applications and the Atmel Gallery online apps store where embedded software extensions can be downloaded.

Meanwhile, Atmel ARM-based MPUs range from entry-level devices to advanced highly-integrated devices with extensive connectivity, refined interfaces and ironclad security.

“Whether you are working on new, existing or legacy designs, a wide range of Atmel ARM-based devices provides the latest features and functionality. These devices also feature the lowest power consumption, a comprehensive set of integrated peripherals and high-speed connectivity,” the engineering rep added.

Interested in learning more about Atmel’s extensive ARM portfolio? You can check out our ARM MCUs here and our ARM MPUs here.

Video: Building a GPS tracker with Atmel’s SAM D20 MCU



A GPS tracking unit uses the Global Positioning System to determine and record the precise location of a vehicle, device or individual. Key design requirements for a GPS tracker include a small form factor, low power consumption and flexible connectivity options.

Atmel’s versatile SAM D20 ARM Cortex-M0+ based microcontroller (MCU) can be used to power such a device, taking all of the above-mentioned design requirements into account.

Indeed, the SAM D20 MCU – embedded with serial communication modules (SERCOM) and low power consumption – provides the flexibility, connectivity and low power required for GPS tracker applications.

In terms of low power consumption, the SAM D20 boasts <150µA/MHz in active (CoreMark) and <2µA with RTC and full RAM retention. Meanwhile, the peripheral event system and intelligent peripherals with Atmel SleepWalking technology further reduces CPU activity and power sipping.

It should also be noted that the SAM D20 MCU offers design engineers 6 highly flexible serial communication modules (SERCOM), each configurable to operate as USART, I2C and SPI – thereby facilitating easy and flexible connection to external sensors, memories, PCs and wireless modules.

Atmel supports a wide range of dev tools and software, including FreeRTOS, Atmel Studio 6 (free IDE with GCC compiler), Atmel Software Framework (free SW libraries of production ready source code), Atmel Gallery (open to extensions) and the SAM D20 Xplained Pro Kit which is packaged with programmer and debugger, as well as connectors for expansion wings.

Interested in learning more? You can check out Atmel’s SAM D20 GPS tracker reference design here.

Electronics Weekly talks Atmel Studio 6

Atmel’s Studio 6 – which supports a wide range of ARM Cortex-M and AVR microcontrollers – allows applications to be written in C/C++ or assembly code. As Jonathan Page of MSC Gleichmann notes in a recent Electronics Weekly article posted by Richard Wilson, Atmel’s IDE facilitates a “top-down design approach” for embedded systems development.

“As a result it can avoid the need to rewrite significant portions of the code for each port to a different MCU variant or architecture,” Page explains. “With Atmel’s Software Framework (ASF), functions are implemented using a common API that abstracts away the device-specific features to maximize the portability of application-level code. This allows code developed for one target MCU to be recompiled for a new target device.”

More specifically, ASF utilizes a layered architecture with four primary categories: component, service, peripheral and board. The starting point in the ASF design process is at the top with the user application.

“This normally interfaces directly to the component and service modules unless the application needs direct access to any low-level device functions provided by the peripheral and board layers, [as] the service layer takes care of all the MCU’s internal hardware features,” Page continues. “Standardization is key to making ASF easy to use, meaning that modules operate in a consistent way using API calls like module_start(…) and module_stop(…).”

In this way, says Page, ASF enables common code development for 8-bit and 32-bit targets, providing not only a standard software library of functions and peripheral drivers but also enabling third party code libraries and associated tools.

“For example, Atmel Gallery provides a moderated App Store feature for Atmel Studio 6.0 extensions that allows access to free, evaluation and paid-for content from Atmel-certified third party development partners,” Page points out. “Typically up to 50% of the code requirements for a new project can be realized from these libraries, to say nothing of the savings that can be achieved when retargeting an application to another MCU.”

Software frameworks, once the domain of enterprise computing, are now clearly delivering productivity and efficiency benefits in embedded applications.

“The concerns of conservative developers, previously reluctant to move beyond the comfort of familiar IDE tools, can be finally been allayed with a software framework providing a true top-down design solution,” Page adds. “This approach achieves all the benefits of hardware abstraction and design portability across a wide range of target devices while losing none of the performance advantages.”

The full text of the Electronics Weekly article is available here.

Atmel debuts new low-power 8-bit tinyAVR MCUs

Atmel has expanded its low-power 8-bit tinyAVR family with the addition of the ATtiny441 and ATtiny841. As we’ve previously discussed on Bits & Pieces, the 8-bit AVR MCUs are ideal for cost-effective consumer applications such as computer accessories, thermostats, personal health accessories and a wide range of Maker projects.

atmelnewattiny

According to Atmel’s Director of Flash-based MCUs Ingar Fredriksen, the new ATtiny 441/841 MCUs boast higher system integration with intuitive tools and peripherals to help facilitate optimized performance with lower power consumption. Indeed, the ultra-low power 14-pin tinyAVR MCUs deliver enhanced analog and communication capabilities for an overall lower system cost in a smaller package.

“Atmel has been the 8-bit MCU leader for more than a decade and continues to think beyond the core, enabling our customers to differentiate their end products,” said Fredriksen. “Our AVRs have been popular since its inception and continue to be the MCU of choice both for professional engineers in consumer and industrial applications and among our 300,000 members in the AVR Freaks community consisting of engineers, hobbyists and Makers.”

As Fredriksen notes, the ATtiny441/841 devices are powerful MCUs packaged in a small form factor. More specifically, the new ATtiny441 and ATtiny841 MCUs feature an uber-mini 3×3 QFN package and 4 and 8KB of Flash memory, respectively.

“The new devices offer enhanced analog performance, including an ADC with calibrated multilevel internal analog reference, with 12 ADC channels on a 14-pin device, two independent USARTs with wake-up from power down without data loss, SPI interface and an I2C slave interface for enhanced communication capabilities,” Fredriksen continued. “In addition, the devices feature flexible clocking options, including a ± 2% internal oscillator with fast wake-up, which allows the UARTs to communicate without the need of an external crystal and wake-up from sleep without data loss.”

As expected, the ATtiny441/841 devices are fully supported by Atmel Studio 6, the integrated development platform (IDP) for developing and debugging Atmel ARM Cortex-M and Atmel AVR MCU-based applications. Simply put, Atmel Studio 6 IDP offers devs a seamless, easy-to-use environment to write, build, simulate, program and debug applications written in C/C++ or assembly code using the integrated GCC compiler and AVR assembler. AS6 also provides easy access to the online Atmel Gallery apps store and Atmel Spaces, a cloud-based collaborative development workspace allowing the designer to host software and hardware projects targeting Atmel MCUs.

To help accelerate devs and Makers accelerate ATtiny441/841 AVR MCU designs, the new devices are supported by Atmel’s AVR Dragon Board which can be snapped up at the Atmel Online Store for USD $49. The ATtiny841 and ATtiny441 are also supported by the STK600, AVRONE, JTAGICE mkII, JTAGICE3 and AVRISPmkII development tools.

The ATtiny441/841 is currently available in mass production, with samples that can be ordered here. Readers who are Maker interested in testing their creativity with AVR MCUs (including the new ATtiny441/841 AVR MCUs) may want to check out Atmel’s very own Master Maker Design Contest here.

Atmel’s long-term partnership with ARM

This week, Atmel expanded its ARM Cortex-A5 microprocessor (MPU) portfolio with new SAMA5D3 devices that deliver smaller packaging, extended temperature support and an alternative peripheral mix. The latest SAMA5D3 devices – designed to neatly balance high performance and low-power operation – also boast an expanded ecosystem with new software and hardware.

As we’ve previously discussed on Bits & Pieces, Atmel offers an extensive portfolio of microcontrollers (MCUs) and microprocessors (MPUs) based on the world’s most popular 8- and 32-bit architectures: Atmel AVR and ARM. Indeed, Atmel’s two decades of microcontroller leadership and innovation include many industry-firsts:

  • The first Flash microcontroller, the first ARM7-based 32-bit Flash microcontroller
  • The first 100nA microcontroller with RAM retention
  • The first ARM9-based Flash microcontroller

“In order to simplify the embedded design process, we’ve meticulously built a robust ecosystem around our ARM microcontrollers,” an Atmel engineering rep told Bits & Pieces. “Meaning, Atmel offers a wide range of software tools and embedded software that support leading operating systems, along with low-cost evaluation kits.”

In addition, Atmel’s flexible and highly integrated ARM-based MCUs are designed to optimize system control, user interface (UI) management and ease of use. That’s why our ARM Cortex-M3 and M4 based architectures share a single integrated development platform (IDP): Atmel Studio 6. This platform offers time-saving source code with more than 1,600 example projects, access to debuggers/simulators, integration with Atmel QTouchtools for capacitive touch applications and the Atmel Gallery online apps store where embedded software extensions can be downloaded.

Meanwhile, Atmel ARM-based MPUs range from entry-level devices to advanced highly-integrated devices with extensive connectivity, refined interfaces and ironclad security.

“Whether you are working on new, existing or legacy designs, a wide range of Atmel ARM-based devices provides the latest features and functionality. These devices also feature the lowest power consumption, a comprehensive set of integrated peripherals and high-speed connectivity,” the engineering rep added.

Interested in learning more about Atmel’s extensive ARM portfolio? You can check out our ARM MCUs here and our ARM MPUs here.