Tag Archives: Atmel START

The power of the platform in IoT and wearable designs


What IoT developers want? A candid look at the wearable designs shows how platform approach is helping design engineers confront daunting challenges in the IoT arena.


“Providers become platforms” is the second most prominent finding of the Forbes story entitled “The Five Most Disruptive Innovations at CES 2016.” Interestingly, all the five disrupting forces outlined in the story relate to the Internet of Things blaze one way or the other. A coincidence? Not really.

CES 2016 was mostly about demonstrating how the advent of a connected world is possible with the creation of an array of smart and interconnected devices. However, the IoT juggernaut, while exploring the true value of connectivity, also requires new business models, which in turn, makes time-to-market even more critical.

Smart badge brings efficiency in enterprise, hospitality and healthcare

Take smart wearable devices, for instance, which were arguably the biggest story on the CES floor this year. A wearable design comprises of one or more sensors, connectivity solution like a radio controller, a processor to carry out system-level functions, storage to log information, display and battery. And what IoT and wearable developers want?

A platform that allows them to facilitate the finished products quickly and efficiently. The design engineers simply can’t afford experimentation with the basic blocks as they need a precedence of basic hardware and software functions working efficiently and smoothly.

Anatomy of Wearable Design

First and foremost, wearable designs confront power constraints even greater than mobile devices. Not surprisingly, ultra-low-power MCUs lie at the heart of wearable designs because they combine flash, on-chip RAM and multiple interface options while intelligently turning power on and off during activity and idle periods, respectively.

The next design conundrum relates to the form factor because these devices are being worn, so they have to be small and light. That, in turn, demands even smaller circuit boards with a greater level of integration. Enter the IoT platforms.

Amid power, performance and form factor considerations, the choice of a right IoT platform means that designers will most likely get the basic building blocks right. And that will allow IoT developers to focus on the application, differentiation and customer needs.

That’s what Atmel is aiming for with the launch of a reference platform for cost-optimized IoT and wearable applications. Atmel’s ultra-low-power platform, which was announced over the week of CES, is aimed at battery-operated wearable devices requiring activity and environment monitoring.

Power has a critical role in the key IoT building blocks

IoT Developer Platform

Below are the key highlights of Atmel’s platform offering for the IoT and wearable designs.

Processor: Microcontroller’s low-power requirements make it a likely choice in wearable designs; MCUs that communicate and process sensor inputs draw very little power from the battery while asleep. Remember the L21 microcontroller that made headlines back in 2015 after leading the low-power benchmarks conducted by EEMBC ULPBench.

Atmel’s SMART SAM L21 MCU — based on ARM’s lowest power Cortex-M0+ processing core — scored 185 in the benchmark and was able to bring the power consumption down to 35µA/MHz in active mode and 200nA in sleep mode.

Communications: The BTLC1000 is an ultra-low power Bluetooth Smart (BLE 4.1) system-on-chip (SoC) that comes integrated with ARM Cortex-M0 core, transceiver, modem, MAC, power amplifier, TR switch, and power management unit (PMU). It can be used as a BLE link controller or data pump with external host MCU or as a standalone applications processor with embedded BLE connectivity and external memory.

Atmel claims that its BTLC1000 Bluetooth solution — a 2.2mm x 2.1mm wafer level chip scale package — is 25 percent smaller than the nearest competitor solution. And Electronic Products magazine has corroborated that premise by calling it the lowest power BLE chipset that consumes less than 4mA in RX and less than 3mA in TX at 0dbm.

Security: Atmel is among the first chipmakers to offer specialized security hardware for the IoT market. Its microcontrollers come integrated with anti-cloning, authentication and encryption features.

Display: Wearable devices often show data such as time, measurements, maps and notifications on a display, and here, capacitive touch provides a very intuitive form of interfacing with the information. Atmel’s MCUs can directly manage capacitive buttons through software libraries that the firm provides.

Furthermore, Atmel offers standalone display controllers that support capacitive button, slider and wheel (BSW) implementations. These touch solutions can be tuned to moisture environments, a key requirement for many wearable applications. Atmel’s maXTouch capacitive touchscreen controller technology is a leading interface solution for its low-power consumption, precision and sensitivity.

Sensors: The development framework for the wearable designs features BHI160 6-axis SmartHub motion sensor and BME280 environment sensor from Bosch. It’s worth noting that Bosch is one of Atmel’s sensor partners. However, wearable product designers are free to pick sensors of their choice from Atmel’s other sensor partners.

Software support: The software package includes RTOS, Atmel’s Studio 7 IDE and Atmel START, which Atmel claims is the world’s first intuitive web-based tool for software configuration and code generation. Moreover, Atmel Software Framework (ASF) offers communication libraries for Bluetooth radios.

Atmel's developer platform for IoT and wearable designs

The truth is that the design game has moved from hardware and software functional blocks to complete developer ecosystems since the iPhone days. Now the ecosystem play is taking platforms to a whole new level in the design diversity that comes with the IoT products.

The choice of a right IoT platform means that designers will most likely get the basic building blocks right, and then, they can focus on the application and customer needs. It also provides design engineers space for differentiation, a critical factor in making wearable devices a consumer success.

 

 

Atmel’s second 2015 FAE training comes to an end


Taking a look back at the final FAE training of the year… 


We couldn’t have found a more appropriate, well-suited place to host our final internal three-day technical training of 2015 than Shenzhen, China. The city is constantly innovating, with IoT startups popping up on seemingly each street corner, throughout every tech shop, factory and Makerspace. This is a good context to present product updates, show off design tricks and run workshops from early morning to late night. We also network with old friends and make new ones, which further strengthens the teamwork, extends our knowledge base and builds confidence to help our customers bring their ideas to life.

H2-2016-FAE-Training

The buzz of the week was the highly-anticipated, full-day workshop on our uber mini Bluetooth Low Energy chipset (the BTLC1000) with overviews of the supported protocol stacks, silicon and software architecture, introduction from product marketing, as well as a hands-on session using Atmel’s standard Xplained development boards, the recently-launched Atmel Studio 7 and Atmel START.

At Atmel, we spread our love equally between wireless and low power. The world’s lowest power 32-bit MCU, the SAM L21, even saw the birth of a new sibling: the SAM L22. This particular board is feature-compatible with the SAM L21, but comes with an LCD controller and some nifty power-save features.

When it comes to IoT applications, performance plays an integral role so we spent time on the new low-power modes and security capabilities of the SAMA5D2. FAEs in a hurry could also complete the entire workshop and connect the SAMA5D2 to a cloud with the WILC1000 Wi-Fi module.

IMG_0847

To top off the event, we saw the debut of more wireless technologies with a complete 6LoWPAN stack emphasising security and authentication with Atmel’s wide range of CryptoAuthentication engines.

Still wondering if IoT is a big thing at Atmel? Well, duh! Between low-power MCUs, all major wireless connectivity protocols, security layers and a cloud ecosystem in place, we’ve got each of the necessary pillars covered.

Big thanks to Atmel’s training team, distributors, and of course, FAEs for making this event such a great success! Until next time!

ARM Keil ecosystem integrates the Atmel SAM ESV7


Keil is part of the ARM wide ecosystem, enabling developers to speed up system release to the market. 


Even the best System-on-Chip (SoC) is useless without software, as well as the best designed S/W needs H/W to flourish. The “old” embedded world has exploded into many emergent markets like the  IoT, wearables, and even automotive, which is no more restricted to motor control or airbags as innovative products from entertainment to ADAS are being developed. What is the common denominator with these emergent products? Each of these require more software functionality and fast memory algorithm with deterministic code execution, and consequently innovative hardware to support these requirements, such as the ARM Cortex-M7-based Atmel | SMART SAM ESV7.

AtmelChipLib Overview

ARM has released a complete software development environment for a range of ARM Cortex-M based MCU devices: Keil MDK. Keil is part of ARM wide ecosystem, enabling developers to speed up system release to the market. MDK includes the µVision IDE/Debugger and ARM C/C++ Compiler, along with the essential middleware components and software packs. If you’re familiar with Run-Time Environment stacked description, you’ll recognize the various stacks. Let’s focus on “CMSIS-Driver”. CMSIS is the standard software framework for Cortex-M MCUs, extending the SAM-ESV7 Chip Library with standardized drivers for middleware and generic component interfaces.

By definition, an MCU is designed to address multiple applications and the SAM ESV7 is dedicated to support performance demanding and DSP intensive systems. Thanks to its 300MHz clock, SAM ESV7 delivers up to 640 DMIPS and its DSP performance is double that available in the Cortex-M4. A double-precision floating-point unit and a double-issue instruction pipeline further position the Cortex-M7 for speed.

Atmel Cortex M7 based Dev board

Let’s review some of these applications where SAM ESV7 is the best choice…

Finger Printer Module

The goal is to provide human bio authentication module for office or house access control. The key design requirements are:

  • +300 MHz CPU performance to process recognition algorithms
  • Image sensor interface to read raw finger image data from finger sensor array
  • Low cost and smaller module size
  • Flash/memory to reduce BOM cost and module size
  • Memory interface to expand model with memory extension just in case.

The requirement for superior performance and an image sensor interface can be seen as essential needs, but which will make the difference will be to offer both cheaper BOM cost and smaller module size than the competitor? The SAM S70 integrates up to 2MB embedded Flash, which is twice more than the direct competitor and may allow reducing BOM and module size.

SAM S70 Finger Print

Automotive Radio System

Every cent counts in automotive design, and OEMs prefer using a MCU rather than MPU, at first for cost reasons. Building an attractive radio for tomorrow’s car requires developing very performing DSP algorithms. Such algorithms used to be developed on expansive DSP standard part, leading to large module size, including external Flash and MCU leading obviously to a heavy BOM. In a 65nm embedded Flash process device, the Cortex-M7 can achieve a 1500 CoreMark score while running at 300 MHz, and its DSP performance is double that available in the Cortex-M4. This DSP power can be used to manage eight channels of speaker processing, including six stages of biquads, delay, scaler, limiter and mute functions. The SAM S71 workload is only 63% of the CPU, leaving enough room to support Ethernet AVB stack — very popular in automotive.

One of the secret sauces of the Cortex-M7 architecture is to provide a way to bypass the standard execution mechanism using “tightly coupled memories,” or TCM. There is an excellent white paper describing TCM implementation in the SAM S70/E70 series, entitled “Run Blazingly Fast Algorithms with Cortex-M7 Tightly Coupled Memories” from Lionel Perdigon and Jacko Wilbrink, which you can find here.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger as well as one of the four founding members of the site. This blog first appeared on SemiWiki on October 23, 2015.

Atmel Studio 7 is now live!


Atmel Studio 7 accelerates MCU designs for both developers and Makers alike, bridging the gap between the MakerSpace and MarketPlace.


For those who may have attended the recent World Maker Faire in New York, this announcement should come as no surprise. However, if you were unable to get to the New York Hall of Science to swing by the Atmel booth or sit in on one of our panel discussions over the weekend, we’ve got some great news. The highly anticipated Atmel Studio 7 is now live!

Studio7__Google+_1160x805

Atmel Studio is a comprehensive, free integrated development environment (IDE) for microcontroller design using both Atmel | SMART ARM-based and AVR MCUs. What’s more, we are also excited to be launching Atmel START — a new, extremely intuitive graphical platform for creating and configuring embedded applications that allow developers to build custom software platforms.

Due to increased complexity and more demanding requirements, embedded developers are turning to IDEs to deliver more intelligence, performance and ease-of-use. Based on the latest Microsoft Visual Studio Shell, Atmel Studio 7 dramatically reduces overall design time by delivering significant performance enhancements for developing and debugging with a simple user interface, improved responsiveness for consumer, industrial and Maker markets, and much more. Plus, the brand-spankin’ new IDE provides real-time application data and power visualization to better optimize application performance and power utilization.

Ideal for the Maker community, the IDE lets Arduino developers quickly port their sketches created in the Arduino environment as C++ projects, and seamlessly migrate their prototypes into the professional Studio 7 environment. This will further streamline a Maker’s ability to help migrate their projects from ‘the MakerSpace to MarketPlace.’

Given the rise of the Internet of Things market and the projected billions of devices to follow, high quality, well integrated embedded software is key to enable designers to devise robust, smart solutions based on today’s connectivity and security standards. Cognizant of this, we are pleased to launch Atmel START which is a web-based tool that helps developers easily integrate basic software building blocks and focus on their own applications rather than having to deal with the headache of configuration and integration.

“Atmel Studio 7 IDE and Atmel START extend our commitment to bridge the gap between the Maker and professional environments, accelerating time-to-market for developers of all levels,” says Steve Pancoast, Atmel Vice President of Applications, Software and Tools. “Our new, innovative development tools and software provide Atmel’s customers with solutions for embedded system designs in low power and wireless communications such as our power visualizer and Atmel START. We are committed to bringing the best tools to market, enabling developers of all levels — from professionals to students, hobbyists and Makers — to get their projects quickly to market.”

Atmel START gives software developers the ability to graphically select software components and configure them for Atmel’s large family of evaluation boards or for their own custom hardware. Developers can build software platforms consisting of low-level drivers, advanced middleware, Real Time Operating Systems (RTOS), high-level communication stacks and more, as well as download the configured software package into their own IDE and make their application.

Atmel START supports graphical configuring of pin-muxes, along with clock trees, and the configured software package can be downloaded for a variety of supported development environments, such as Atmel Studio 7, IAR Embedded Workbench and Keil µVision. In addition to all that, the tool is entirely web-based so no installation is required before you get started — and the downloaded code will always be up-to-date.

“The Atmel START platform makes it easy for developers to get projects off the ground quickly and obtain the most benefit from working with ARM Keil MDK tools,” adds Reinhard Keil, ARM Director of Microcontroller Tools. “By using CMSIS, Atmel has once again proven the value of creating a platform built on a standards-based approach. Atmel START creates a robust and portable software management system that makes it easy for developers to deploy applications in any environment.”

Interested? Atmel Studio 7 is free of charge and is integrated with the Atmel Software Framework (ASF) — a large library of free source code with 1,600 project examples. Those wishing to get started with the IDE can head over to its official page here, as well as explore Atmel START in more depth by downloading the latest white paper on the platform.