Tag Archives: Atmel | SMART SAM D21

mbed eval boards showcase focus on IoT software and connectivity


Chipmakers like Atmel are joining hands with ARM to bring the entire ecosystem under one roof and thus facilitate the creation of standards-based IoT products.


ARM’s mbed operating system is winning attention in the highly fragmented embedded software space by promising a solid software foundation for interoperable hardware and thus scale the Internet of Things designs by narrowing the development time.

Atmel has put its weight behind ARM’s mbed OS by launching the single-chip evaluation board for the IoT ecosystem in a bid to ensure low software dependence for the embedded developers. The leading microcontroller supplier unveiled the mbed evaluation platform at the recent ARM TechCon held in Santa Clara, California.

The mbed OS platform is focused on rapid development of connected devices with an aim to create a serious professional platform to prototype IoT applications. So IoT developers don’t have to look to software guys for help. The mbed stack features a strong focus on enhancing the IoT’s connectivity and software components.

Atmel mbed Xpro board

ARM is the lead maintainer for the mbed OS modules while it adds silicon partners, like Atmel, as platform-specific dependencies for the relevant mbed OS modules. Silicon partners are responsible for their platform-specific drivers.

Atmel’s mbed-enabled evaluation board is based on the low-power 2.4GHz wireless Cortex-M0+ SAM R21 MCU. Moreover, Atmel is expanding mbed OS support for its Wi-Fi modules and Bluetooth Low Energy products.

The fact that Atmel is adding mbed OS to its IoT ecosystem is an important nod for ARM’s mbed technology in its journey from merely a hardware abstraction layer to a full-fledged IoT platform. Atmel managers acknowledge that mbed technology adds diversity to embedded hardware devices and makes MCUs more capable.

Solid Software Foundation

There is a lot of code involved in the IoT applications and software is getting more complex. It encompasses, for instance, sensor library to acquire data, authentication at IoT gateways and SSL security. Here, the automatic software integration engine like mbed lets developers focus on their applications instead of worrying about integrating off-the-shelf software.

The mbed reference designs like the one showcased by Atmel during ARM TechCon are aimed at narrowing the development time with the availability of building blocks and design resources—components, code and infrastructure—needed to bootstrap a working IoT system. Atmel managers are confident that a quality software foundation like mbed could help bring IoT products to market faster.

thingsquare2

Atmel’s mbed-enabled IoT evaluation board promises harmony between hardware and software. Apparently, chipmakers like Atmel are joining hands with ARM to bring the entire ecosystem — OS software, cloud services and developer tools — under one roof, and thus facilitate the creation of standards-based IoT products. Atmel’s mbed evaluation board clearly mirrors that effort to deliver a complete hardware, software and developer tools ecosystem in order to bring IoT designs quicker to market.

The platform comprises of mbed OS software for IoT client devices like gateways and mbed Device Server for the cloud services. ARM launched the mbed software platform in 2014 and Atmel has been part of this initiative since then.

mbed in Communications Stack

Additionally, Atmel has tied the mbed association to its SmartConnect wireless solutions to make the best of mbed’s networking stack in the Internet of connected things. The IoT technology is built on layers, and here, interoperability of communications protocols is a key challenge.

For a start, Atmel’s SAM R21-Xpro evaluation board is embed-enabled and is built around the R21 microcontroller, which has been designed for industrial and consumer wireless applications running proprietary communication stacks or IEEE 802.15.4-compliant solutions.

Next up, the evaluation board includes SAM W25 Wi-Fi module that integrates IEEE 802.11 b/g/n IoT network controller with the existing MCU solution, SAM D21, which is also based on the Cortex-M0+ processor core.

XPLAIN
Furthermore, Atmel is offering an mbed-enabled Bluetooth starter kit that includes SAM L21 microcontroller-based evaluation board and ultra-low-power Bluetooth chip BTLC1000, which is compliant with Bluetooth Low Energy 4.1. Atmel demonstrated a home lighting system at the ARM TechCon show floor, which employed SAM R21-based Thread routers that passed light sensor information to an mbed-enabled home gateway. Subsequently, this information was processed and sent to the mbed Device Server using a web interface.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Only true engineers have Christmas trees like this


♫ Have yourself an engineery little Christmas… ♫


Although some Makers enjoy dressing their Christmas trees with beeps and blinks, others go the extra mile to deck theirs out with Arduino-based controls and wireless connectivity. Well, the Atmel applications team in Norway decided to take it to an entirely whole new level last year. Rather than merely embellish the decorative piece with traditional ornaments, lights and ribbon, the Trondheim engineers built a tree made of actual microcontrollers. And that’s not all, it’s powered by a pair of Atmel | SMART SAM D21 Xplained Pro eval kits. For an extra “tree-t,” the group even added a plexi LED star on top!

IMG_4970

IMG_4979

IMG_4981

SmartEverything is like the Swiss Army knife of IoT boards


The SmartEverything dev board is an Arduino form-factor prototyping platform that combines SIGFOX, BLE, NFC, GPS and a suite of sensors.


Announced earlier this year, SmartEverything is an IoT development platform from Arrow Electronics. Living up to its name, the latest iteration of the SoC, dubbed the SmartEverything Foxboasts a familiar Arduino form-factor with an array of factory-bundled I/O ports, sensors and wireless connectivity.

R9015121-01

Impressively, the kit combines SIGFOX, Bluetooth and NFC technologies with GPS and a suite of embedded sensors. An Atmel | SMART D21 at its heart is used to integrate the featured devices, while a SIGFOX module provides IoT enablement.

The SIGFOX standard is energy efficient and wide-transmission-range technology that employs UNB (Ultra Narrow Band) based radio and offers low data-transfer speeds of 10 to 1000 bits per second. However, it is highly energy-efficient and typically consumes only 50μW compared to 5000μW for cellular communication, meaning significantly enhanced battery life for mobile or portable smart devices.

R9015121-03

A Telit LE51-868 S wireless module gives design engineers access to the rapidly expanding SIGFOX cellular wireless network and covers the 863-870MHz unlicensed ISM band. It is preloaded with the SIGFOX network stack and the Telit proprietary Star Network protocol. What’s more, the Telit cloud management software provides easy connection up to the cloud.

Truly like the Swiss Army knife of the IoT, the SmartEverything board is equipped with: an Atmel Crypto Authentication chipset; an 868MHz antenna; a GPS module with embedded antenna for localizations applications, which supports the GPS, QZSS and GLONASS standards, and is Galileo ready; a proximity and ambient light sensor; a capacitive digital sensor for humidity and temperature measurement; a nine-axis 3D accelerometer, a 3D gyroscope and 3D magnetometer combination sensor; a MEMS-based pressure sensor; an NTAG I2C NFC module; and a Bluetooth Low Energy transceiver.

R9015121-04

The SmartEverything measures only 68.8mm x 53.3mm in size, and includes USB connectors, a power jack and an antenna extending that extend the board. The unit can be powered in one of three ways, either through two AA 1.5V batteries (1.4V to 3.2V), a 5 to 45V external supply or a 5V mini-USB connector.

For quick and easy software development, the SmartEverything Fox board is fully supported by the Arduino IDE and Atmel Studio. Can it get any better than that? If you’re looking for an IoT board that does just about everything, you may want to check this SoC out.

Pixel is an Arduino-compatible smart display


The Pixel combines a 32-bit ARM Cortex M0+ microcontroller with a color OLED display and microSD.


The brainchild of Boston-based startup Rabid Prototypes, the Pixel is an open source smart display that combines an Arduino-compatible MCU, a color OLED screen and microSD.

17e3121f47a1659b1ece2240bcd6916d_original

The Pixel — which recently made its debut on Kickstarter — is built around the mighty Atmel | SMART SAM D21 operating at 48MHz and packing 32K of RAM, along with a 1.5” 128×128 pixel OLED screen and a microSD slot. Measuring only 1.8”x 1.8” in size, the compact board is extremely versatile and can be employed to create wearables, attach sensors, display data or play retro games.

When it comes to programming, if you’re familiar with Arduino, you can configure your Pixel. Simply plug the Pixel into your PC using a microUSB cable, select which board you want to program, and hit the upload button in the IDE when you’re ready. The Pixel ships with the Arduino/Genuino Zero bootloader already installed.

82fa90526ed9b7c92fa1fd0c050c2268_original

What’s more, the Pixel is compatible with the Arduino’s SPI and SD libraries. Communication with the display and microSD card are both handled through the SPI bus, which is broken out on a set of pads for a surface mount header.  The ATN pin replaces the reset pin on this header and acts as the CS pin for the microSD. As the Rabid Prototypes crew points out, pins 7, 8 and 9 (ORST, ODC, OCS) are utilized to control the display.

The Pixel is even compatible with Adafruit’s graphics library, which provides functions for blitting images, drawing primitives like lines and circles, and includes bitmapped font support as well.

Lastly, if you ever need to modify the fuses or bootloader, the Pixel features an SWD header which can be used with the Atmel-ICE development tool. On the final version of the board, this will be a through-hole header, so you can connect the ICE by inserting a pin header into its ribbon cable.

7ebde849934e8454d0640ca7fabf935c_original

Interested? Head over to the Pixel’s Kickstarter campaign, where Rabid Prototypes is currently seeking $5,000. Looking ahead, the team will make the unit entirely open source by releasing its schematics and PCB layout, thereby giving Makers the ability to freely modify the design and integrate it into their own boards. Delivery is slated for January 2016.

The Arduino Wi-Fi Shield 101 is now available


This Wi-Fi shield is based on the ATWINC1500 module, and wirelessly connects your Arduino to the Internet.


A year after breaking the news at Maker Faire New York, the Arduino Wi-Fi Shield 101 is now available for purchase on the Arduino Store.

thumbnail-e1443034979113

The low-cost ($49.90) shield is an easy-to-use extension that can be seamlessly attached to any Arduino or Genuino board enabling high-performance Wi-Fi connectivity. This device provides the design community with more opportunities to securely connect their IoT applications, ranging from consumer goods to wearables and robotics.

“In this increasingly connected world, the Arduino Wi-Fi Shield 101 will help drive more inventions in the IoT market,” Massimo Banzi explained. “Expanding our portfolio of Arduino extensions, this new shield can flawlessly connect to any modern Arduino board giving our community more options for connectivity, along with added security elements to their creative projects.”

ASX00001_featured_1024x1024

The Arduino Wi-Fi Shield 101 makes connecting with a wireless network super simple, with no further configuration in addition to the SSID and password required. What’s more, it comes with an easy-to-follow Wi-Fi library that allows you to write sketches that link to the Internet using the shield.

The board itself is based on the Atmel SmartConnect WINC1500 module, compliant with the IEEE 802.11 b/g/n standard. This network controller features an integrated TCP/IP stack, TLS security and SoftAP for seamless provisioning. On top of that, the Arduino Wi-Fi Shield 101 boasts an ATECC508A CryptoAuthentication chip for enhanced security.

CPx_eXvWcAAH3j0

It should be noted that this is the first Arduino product fully supporting SSL, as well as all the communication between your board and their secured server. With the power of the Arduino Zero (SAMD21) and the Wi-Fi Shield 101, Makers can now develop secure IoT applications using the highly popular Arduino Language.

“A working example and instructions on how to get started are available on Arduino Cloud, a work-in-progress project that gives you access to a pre-configured MQTT server for your IoT sketches using only your Arduino account. More examples and features will be available in the next months,” Arduino adds.

Interested? Head over to the Arduino Wi-Fi Shield 101’s official page here.

ZeroPi is an Arduino and Raspberry Pi-compatible dev kit


ZeroPi is an ARM Cortex-M0+-based development board for robotic motion structure systems, 3D printers, CNC machines and more.


ZeroPi is an Arduino and Raspberry Pi-compatible development kit for robotic motion structure systems and 3D printers. Based on the mighty Atmel | SMART SAM D21, the next-generation board is capable of controlling 11 micro servos and either eight DC motors or four stepper motors simultaneously.

8593e8974dbbe70ee4ee826a8ef292b4_original

Equipped with a four-channel SLOT interface, the module is compatible with today’s most common stepper motors and DC drivers, and supports open source sensors. ZeroPi will certainly be an appealing option for a wide range of applications, from 3D printing and CNC machines to mobile robots. In fact, the board boasts specially designed M4 holes that are well suited for Makeblock aluminum mechanical parts used in many DIY projects.

Additionally, Makers can take comfort in knowing that ZeroPi can be programmed with the highly popular Arduino IDE, giving you access to a number of easy-to-use libraries. According to its creators, a series of example codes for ZeroPi will be made available, such as an encoder readout and temperature monitoring.

f7b3b4880a017057f7911db94b96b5d9_original

And that’s not all. By simply plugging the SAM D21 powered board into the Raspberry Pi’s connector, you can also unlock countless features, spanning from tablet and wireless control to Bluetooth connectivity. With RPi, you can install a web browser to command the motors and servos directly, as well as remotely monitor your 3D print job. It can even interface with Java Script.

On top of all that, the team was able to successfully port the Marlin and Repetier firmware to ZeroPi for use in a vast majority of open source 3D printers. Not only does this eliminate the need for an expansion board, the kit is four times faster than the Arduino Mega, cheaper and half its size.

502d25a9831d72bc98627b4534ad07a9_original

“ZeroPi is also specially designed for motion structure systems. We have built many projects to test its functions and discover more possibilities from simple to complex systems of robotic,” the team adds. “We built a Johnny-Five robot, based on [the] Johnny-Five library by using ZeroPi to control this large motion structure and achieve the image recognition function and wireless control.”

Aside from the SAMD21J18 at its core, other key specs of the ZeroPi include:

  • Operating voltage: 3.3V
  • General purpose I/O pins: 35
  • UART: 2
  • Analog input pins: 4, 12-bit ADC channels
  • Analog output pins: 1, 10-bit DAC
  • DC current per I/O pin: 7mA
  • Flash: 256KB
  • SRAM: 32KB
  • Clock speed: 48MHz

Intrigued? Head over to ZeroPi’s Kickstarter campaign, where it is currently seeking $5,000. Delivery is estimated for December 2015.

Modulo is now based on the Atmel | SMART SAM D21


Modulo is a simple, modular solution for Makers looking to build electronics.


Back in May, former Pixar developer Erin Tomson unveiled a new set of plug-and-play boards designed to take the headache and hassle out of building electronics. Not long after its Kickstarter launch, Modulo flew by its $10,000 pledge goal having garnered over $50,000 from 315-plus backers. Since then, the Richmond, California-based startup has experienced tremendous popularity at Maker Faires and has even demonstrated its simplicity with some DIY projects of their own, ranging from a tea-brewing robot to a smart sous vide machine.

low-slow-screen

Essentially, Modulo is a series pre-made circuit boards that provides Makers with all of the necessary tools to bring their gizmos and gadgets to life, without the messiness of wiring and soldering. Each module is equipped with its own little processor (ATtiny841) that is tasked with handling its operation and communicating with a controller board. While the Modulo Controller had been built around the mighty ATmega32U4 for its crowdfunding debut, Tomson has since upgraded its design to include the much faster and powerful Atmel | SMART SAM D21 — the same Cortex-M0+ MCU at the heart of the Arduino Zero. What this means is that the Controller will work nicely with Arduino and will be well received by the flourishing DIY community.

“This new chip is four times faster, has eight times the Flash storage, and has 12 times the RAM of the ATmega32u4 used in earlier prototypes,” Tomson explains.

faa3fd8f293f81ae23ba786a72b27285_original-1

Using a connector on its back, Makers can slide their boards right into the so-called Modulo Base which securely holds them in place. Following a successful Kickstarter run, Tomson had decided to switch the connectors, both for attaching each Modulo to the base and for cables that link the bases together. These improved connectors are easier to assemble and more compact. Furthermore, those wishing to employ a Spark Core, Photo or Electron instead of the Controller can do so by selecting a Spark Base.

The Arduino-compatible Controller boasts six I/O ports that can be used as digital or analog inputs and digital outputs. Four of the six ports can even be used to control servos or output a PWM signal. Additionally, each port has its own power and ground pins to help keep things nice and neat, while circuitry on the board will protect it from any potential wiring mishaps.

4bc5bd9fe910e49c934f38dad43e75db_original

Similar to other DIY dev kits like littleBits, Modulo features a number of different modules with varying capabilities. These include a color OLED display, a push-button illuminated knob, a motor driver, a thumb joystick, a temperature probe, I/O and extension cables, as well as an IR transceiver and a Blank slate that lets Makers devise circuits from scratch. Any four modules can be connected to the Base, or can be daisy chained together for larger projects.

The ARM Cortex-M0+ driven Controller can also act as a bridge, enabling users to manage their modules from Python running Raspberry Pi or a Mac, Windows or Linux computer. Beyond that, they can choose to use the Arduino IDE to reprogram the Controller or connect to the Internet via Spark. Communication between devices is accomplished through the standard I2C bus.

d8ec08a6d24fa7d97fb44e1288d2dd64_original

The Modulo Protocol allows for the Controller to dynamically discover connected devices, assign addresses, retrieve device capabilities and detect bus errors. It is an extension of I2C and can be utilized on a mixed ­protocol bus along with SMBus and traditional I2C devices.

“Modulo wouldn’t have been possible without the contributions of the open source community, so we’re giving back by open sourcing our protocols, hardware designs, firmware and libraries,” Tomson adds.

Those wishing to learn more, explore technical specs or pre-order a Modulo set can head over to its official website here.