Tag Archives: Atmel | SMART Cortex-M0+ MCU

Atmel expands QTouch Safety Platform for home appliance user interfaces

Just in time for Electronica 2014, we’re excited to announce our new QTouch Safety Platform for capacitive touch-enabled user interfaces in the home appliance market. Not only does the new platform add mandatory safety, it also supports Atmel | SMART ARM Cortex-M0+ based MCUs for safety critical home electronics applications.

banner_touchsoftware

The most recent QTouch capacitive touch platform is based on the Atmel | SMART SAM D20 integrating an on-chip peripheral touch controller (PTC) to deliver excellent EMC robustness, short response times and combines self- and mutual capacitance sensors for up to 256 channels. Today, the QTouch platform is already widely adopted by some of the world’s leading manufacturers.

When it comes to next-gen home appliances, designers are not only facing stringent certification requirements for safety and EMC robustness, but are seeking a platform that supports all the applicable safety standards required to pass end product qualification with minimal design time. Fortunately, Atmel’s QTouch Safety Platform is pre-qualified for the VDE/UL 60730 Class B and UL 1998 certifications, reducing a designer’s overall development time by as much as 12 months.

What this means is that household appliance designers can now harness their energy on more innovative, easy-to-use interfaces that support capacitive touch buttons, sliders and wheels on an Atmel | SMART ARM Cortex M0+-based MCU, rather than focusing on safety certification features. The SAM D20 ARM-based Cortex M0+-based MCU is the first device to support the QTouch safety library, with support for future home appliance devices to be added as they become available.

In the meantime, designers can go ahead and download the QTouch Safety Library Firmware, FMEA library and QTouch Composer Development Software on an Atmel ARM Cortex M0+-based MCU. The QTouch Safety Library ensures excellent noise tolerance through dynamic hardware and firmware noise filtering through the IEC 61000-4-6 10V conducted immunity with minimal design effort. Additionally, QTouch Safety Platform provides FMEA support and moisture tolerance.

“With the increased regulations in Europe and the US for safer home appliance products, designers are looking for pre-qualified solutions that accelerate this part of the development cycle,” said Geir Kjosavik, Atmel Director of QTouch Product Marketing. “Atmel’s latest QTouch Safety Platform gives designers the pre-qualified features for their home appliances while enabling them to differentiate their products with capacitive touch interfaces in the form of buttons, wheels or sliders. We are excited to help bring more safety critical home appliances to market and are continuing to broaden our portfolio of devices to support the home appliance market.”

To help accelerate a designer’s development, the QTouch Safety Platform offers easy-to-use software and hardware tools, each of which are available free of charge in the Atmel Gallery. Wait, there’s more good news! The SAM D20 — offered in 16KB to 256KB of Flash in 32-, 48- and 64-pin packages — is now shipping in volume.

Furthermore, the SAM D20 QTouch robustness demo — which provides an evaluation and demo highlighting the superior performance Atmel’s QTouch Safety Platform — is available in the Atmel Store for USD $149. The kit comes pre-loaded with a pre-qualified 60730 Class B software that can be easily re-programmed and debugged using the embedded debugger, not to mention passes all standard home appliance EMC tests.

In addition to the SAM D20 QTouch robustness demo, the QTouch Safety Platform can be explored using the Xplained Pro evaluation platform. The SAM D20 Xplained Pro evaluation board is available for USD $39, while the QT1 Xplained Pro adding QTouch support is available for USD $25. Both of these kits are also available in the Atmel Store.

Heading to Munich for Electronica 2014? Stop by Atmel booth — located in Hall A5, #542 — to discover how we’re bringing more intelligent, connected devices together. In the Atmel SMART HOME ZONE, you will have the chance to experience a live demonstration of the QTouch Safety Library with SAM D20, displaying the superior capacitive touch performance of the peripheral touch controller while achieving best-in-class noise immunity and moisture tolerance required in home appliances.

Video: Atmel showcases the WINC1500 wireless module at ARM TechCon

Back in September, Atmel expanded its leading SmartConnect wireless portfolio with four new turnkey system-on-chips (SoCs), including the WINC1500. The recently-unveiled WINC1500 is an IEEE 802.11b/g/n network controller optimized for battery-powered Internet of Things (IoT) applications.

atmel_winc1500_fb_tc_1200x1200_091714

The WINC1500 is an ideal add-on to existing MCU solutions bringing Wi-Fi and network capabilities through UART or SPI-to-WiFi interface, and connects to any Atmel AVR or Atmel  | SMART MCU with minimal resource requirements. As a result, the SoC enables Makers and engineers to bring connectivity to any embedded design, ranging from consumer to industrial apps.

As Hackaday’s Adam Fabio recently noted, “The WINC1500 is a nifty little Wi-Fi module in its own right… 72Mbps may not sound like much by today’s standards, but it’s plenty fast for most embedded applications. WINC handles all the heavy lifting of the wireless connection.”

The WINC1500’s most advanced mode is a single stream 1×1 802.11n mode providing up to 72 Mbps PHY throughput, and features a fully-integrated power amplifier, LNA, switch and power management. The solution provides internal Flash memory as well as multiple peripheral interfaces including UART, SPI, and I2C. The only external clock source required for the SoC is a high-speed crystal or oscillator with a wide variety of reference clock frequencies supported (between 12 – 32 MHz). The WINC1500 is also available in a QFN package.

maxresdefault

During ARM TechCon 2014, our friends at ARM had the chance to catch up with Henrik Flodell, Atmel Senior Product Marketing Manager, who highlighted a few demos that combined ARM-based Cortex-M0+ MCUs with the Atmel WINC1500 module.

First, Flodell showed off the SAM D21 Xplained Pro Kit, combined with a WINC1500 and motion sensor. As the video below demonstrates, the board was capable of wirelessly transmitting its coordinates to the application running on the screen.

“For the professional that wants to use the Atmel development tools or those from third party vendors, we have the Xplained Pro Solution.” However, Flodell went on to address the DIY crowd seeking to use 32-bit ARM Cortex-M0+ based MCUs stating, “We’ve also realized there’s a huge interest in the Maker community for creating connected devices based on ARM technology.”

Flodell then went on to give a first-hand look at our recently-unveiled Arduino Shield 101, which was paired with the SAM D21-based Arduino Zero.

This cost-effective, secure shield is an easy-to-use extension that can seamlessly be connected to any Arduino board enabling high-performance Wi-Fi connectivity. The Arduino Wi-Fi Shield 101 is powered by Atmel’s wireless network controller, part of the Atmel SmartConnect family. It also includes the ATECC108 device, from the CryptoAuthentication family, which allows users to easily incorporate hardware authentication capability in their design.