Tag Archives: Atmel CryptoAuthentication

Security coprocessor marks a new approach to provisioning for IoT edge devices


It’s worth noting that security breaches rarely involve breaking the encryption code; hackers mostly use techniques like spoofing to steal the ID.


The advent of security coprocessor that offloads the provisioning task from the main MCU or MPU is bringing new possibilities for the Internet of Things product developers to secure the edge device at lower cost and power points regardless of the scale.

Hardware engineers often like to say that there is now such thing as software security, and quote Apple that has all the money in the world and an army of software developers. The maker of the iPhone chose a secure element (SE)-based hardware solution while cobbling the Apple Pay mobile commerce service. Apparently, with a hardware solution, engineers have the ecosystem fully in control.

sec-1

Security is the basic building block of the IoT bandwagon, and there is a lot of talk about securing the access points. So far, the security stack has largely been integrated into the MCUs and MPUs serving the IoT products. However, tasks like encryption and authentication take a lot of battery power — a precious commodity in the IoT world.

Atmel’s solution: a coprocessor that offloads security tasks from main MCU or MPU. The ATECC508A uses elliptic curve cryptography (ECC) capabilities to create secure hardware-based key storage for IoT markets such as home automation, industrial networking and medical. This CryptoAuthentication chip comes at a manageable cost — 50 cents for low volumes — and consumers very low power. Plus, it makes provisioning — the process of generating a security key — a viable option for small and mid-sized IoT product developers.

A New Approach to Provisioning

It’s worth noting that security breaches rarely involve breaking the encryption code; hackers mostly use techniques like spoofing to steal the ID. So, the focus of the ATECC508A crypto engine is the tasks such as key generation and authentication. The chip employs ECC math to ensure sign-verify authentication and subsequently the verification of the key agreement.

The IoT security — which includes the exchange of certificates and other trusted objects — is implemented at the edge node in two steps: provisioning and commissioning. Provisioning is the process of loading a unique private key and other certificates to provide identity to a device while commissioning allows the pre-provisioned device to join a network. Moreover, provisioning is carried out during the manufacturing or testing of a device and commissioning is performed later by the network service provider and end-user.

Atmel ATECC508A crypto-engine

Presently, snooping threats are mostly countered through hardware security module (HSM), a mechanism to store, protect and manage keys, which requires a centralized database approach and entails significant upfront costs in infrastructure and logistics. On the other hand, the ATECC508A security coprocessor simplifies the deployment of secure IoT nodes through pre-provisioning with internally generated unique keys, associated certificates and certification-ready authentication.

It’s a new approach toward provisioning that not only prevents over-building, as done by the HSM-centric techniques, but also prevents cloning for the gray market. The key is controlled by a separate chip, like the ATECC508A coprocessor. Meaning, if there are 1,000 IoT systems to be built, there will be exactly 1,000 security coprocessors for them.

Certified-ID Security Platform

Back at ARM TechCon 2015, Atmel went one step ahead when it announced the availability of Certified-ID security platform for the IoT entry points like edge devices to acquire certified and trusted identities. This platform leverages internal key generation capabilities of the ATECC508A security coprocessor to deliver distributed key provisioning for any device joining the IoT network. That way it enables a decentralized secure key generation and eliminates the upfront cost of building the provisioning infrastructure for IoT setups being deployed at smaller scales.

AT88CKECCROOT-SIGNER

Atmel, a pioneer in Trusted Platform Module (TPM)-based secure microcontrollers, is now working with cloud service providers like Proximetry and Exosite to turn its ATECC508A coprocessor-based Certified-ID platform into an IoT edge node-to-cloud turnkey security solution. TPM chips, which have roots in the computer industry, aren’t well-positioned to meet the cost demands of low-price IoT edge devices.

Additionally, the company has announced the availability of two provisioning toolkits for low volume IoT systems. The AT88CKECCROOT toolkit is a ‘master template’ that creates and manages certificate root of trust in any IoT ecosystem. On the other hand, AT88CKECCSIGNER is a production kit that allows designers and manufacturers to generate tamper-resistant keys and security certifications in their IoT applications.

Are you designing for the latest automotive embedded system?


Eventually, self-driving cars will arrive. But until then, here’s a look at what will drive that progression.


The next arrow of development is set for automotive

We all have seen it. We all have read about it in your front-center technology news outlets. The next forefront for technology will take place in the vehicle. The growing market fitted with the feature deviation trend does not appeal to the vision of customizing more traditional un-connected, oiled and commonly leveraged chassis vehicles of today. Instead, ubiquity in smartphones have curved a design trend, now mature while making way for the connected car platform. The awaiting junction is here for more integration of the automotive software stack.  Opportunities for the connected car market are huge, but multiple challenges still exist. Life-cycles in the development of automotive and the mobile industry are a serious barrier for the future of connected cars. Simply, vehicles take much longer to develop than smartphones other portable gadgetry. More integration from vendors and suppliers are involved with the expertise to seamlessly fit the intended blueprint of the design. In fact, new features such as the operating system are becoming more prevalent, while the demand for sophisticated and centrally operated embedded systems are taking the height of the evolution. This means more dependence on integration of data from various channels, actuators, and sensors — the faculty to operate all the new uses cases such as automatic emergency response systems are functionality requiring more SoC embedded system requirements.

A step toward the connected car - ecall and how it works

What is happening now?

People. Process. Governance. Adoption. Let’s look at the similarities stemmed from change. We are going to witness new safety laws and revised regulations coming through the industry. These new laws will dictate the demand for connectivity. Indeed, drawing importance this 2015 year with the requirement set by 2018, European Parliament voted in favor of eCall regulation. Cars in Europe must be equipped with eCall, a system that automatically contacts emergency services directing them to the vehicle location in the event of an emergency. The automotive and mobile industries have different regional and market objectives. Together, all the participants in both market segments will need to find ways to collaborate in order to satisfy consumer connectivity needs. Case in point, Chrysler has partnered with Nextel to successfully connect cars like their Dodge Viper, while General Motors uses AT&T as its mobile development partner.

General Motors selected AT&T as its mobile partner

What is resonating from the sales floor and customer perspective?

The demand is increasing for more sophistication and integration of software in the cabin of cars. This is happening from the manufacturer to the supplier network then to the integration partners — all are becoming more engaged to achieve the single outcome, pacing toward the movement to the connected car. Stretched as far as the actual retail outlets, auto dealers are shifting their practice to be more tech savvy, too. The advent of the smart  vehicle has already dramatically changed the dealership model, while more transformation awaits the consumer.

On the sales floor as well as the on-boarding experience, sales reps must plan to spend an hour or more teaching customers how to use their car’s advanced technology. But still, these are only a few mentioned scenarios where things have changed in relation to cars and how they are sold and even to the point of how they are distributed, owned, and serviced. One thing for certain, though, is that the design and user trend are intersecting to help shape the demand and experience a driver wants in the connected car. This is further bolstered by the fast paced evolution of smartphones and the marketing experiences now brought forth by the rapid adoption and prolific expansion of the mobile industry tethered by their very seamless and highly evolved experiences drawn from their preferred apps.

Today, customer experiences are becoming more tailored while users, albeit on the screen or engaged with their mobile devices are getting highly acquainted with the expectation of “picking up from where I left off” regardless of what channel, medium, device, or platform.  Seamless experiences are breaking through the market.  We witness Uber, where users initialize their click on their smartphone then follows by telemetry promoted from Uber drivers and back to the users smart phone.  In fact, this happens vis versa, Uber driver’s have information on their console showing customer location and order of priority.  Real life interactions are being further enhanced by real-time data, connecting one device to draw forth another platform to continue the journey.  Transportation is one of the areas where we can see real-time solutions changing our day-to-day engagement.  Some of these are being brought forth by Atmel’s IoT cloud partners such as PubNub where they leverage their stack in devices to offer dispatch, vehicle state, and geo fencing for many vehicle platforms.  Companies like Lixar, LoadSmart, GetTaxi, Sidecar, Uber, Lyft are using real-time technologies as integral workings to their integrated vehicle platforms.

The design trajectory for connected cars continues to follow this arrow forward

Cars are becoming more of a software platform where value chain add-ons tied to an ecosystem are enabled within the software tethered by the cloud where data will continue to enhance the experience. The design trajectory for connected cars follow this software integration arrow.  Today, the demand emphasizes mobility along with required connectivity to customer services and advanced functions like power management for electric vehicles, where firmware/software updates further produce refined outcomes in the driver experience (range of car, battery management, other driver assisted functionalities).

Carmakers and mobile operators are debating the best way to connect the car to the web. Built-in options could provide stronger connections, but some consumers prefer tethering their existing smartphone to the car via Bluetooth or USB cable so they can have full access to their personal contacts and playlists. Connected car services will eventually make its way to the broader car market where embedded connections and embedded systems supporting these connections will begin to leverage various needs to integrate traditional desperate signals into a more centrally managed console.

Proliferation of the stack

The arrow of design for connected cars will demand more development, bolstering the concept that software and embedded systems factored with newly-introduced actuators and sensors will become more prevalent. We’re talking about “software on wheels,” “SoC on wheels,” and “secured mobility.”

Design wise, the cost-effective trend will still remain with performance embedded systems. Many new cars may have extremely broad range of sensor and actuator‑based IoT designs which can be implemented on a single compact certified wireless module.

The arrow for connected cars will demand more development bolstering the concept that software and embedded systems factored with newly introduced actuators & sensors will become more prevalent; “software on wheels”, “SoC on wheels” and “secured mobility”.

Similarly, having fastest startup times by performing the task with a high-performance MCU vs MPU, is economic for a designer. It can not only reduce significant bill of materials cost, development resources, sculpted form factor, custom wireless design capabilities, but also minimize the board footprint. Aside from that, ARM has various IoT device development options, offering partner ecosystems with modules that have open standards. This ensures ease of IoT or connected car connectivity by having type approval certification through restrictive access to the communications stacks.

Drivers will be prompted with new end user applications — demand more deterministic code and processing with chips that support the secure memory capacity to build and house the software stack in these connected car applications.

Feature upon feature, layer upon layer of software combined with characteristics drawn from the events committed by drivers, tires, wheels, steering, location, telemetry, etc. Adapted speed and braking technologies are emerging now into various connected car makes, taking the traditional ABS concept to even higher levels combined with intelligence, along with controlled steering and better GPS systems, which will soon enable interim or cruise hands-free driving and parking.

Connected Car Evolution

Longer term, the technological advances behind the connected car will eventually lead to self-driving vehicles, but that very disruptive concept is still far out.

Where lies innovation and change is disruption

Like every eventual market disruption, there will be the in-between development of this connected car evolution. Innovative apps are everywhere, especially the paradigm where consumers have adopted to the seamless transitional experiences offered by apps and smartphones. Our need for ubiquitous connectivity and mobility, no matter where we are physically, is changing our vehicles into mobile platforms that want us users to seamlessly be connected to the world. This said demand for connectivity increases with the cost and devices involved will become more available. Cars as well as other mobility platforms are increasingly becoming connected packages with intelligent embedded systems. Cars are offering more than just entertainment — beyond providing richer multimedia features and in-car Internet access.  Further integration of secure and trusted vital data and connectivity points (hardware security/processing, crypto memory, and crypto authentication) can enable innovative navigation, safety and predictive maintenance capabilities.

Carmakers are worried about recent hacks,  especially with issues of security and reliability, making it unlikely that they will be open to every kind of app.  They’ll want to maintain some manufactured control framework and secure intrusion thwarting with developers, while also limiting the number of apps available in the car managing what goes or conflicts with the experience and safety measures.  Importantly, we are taking notice even now. Disruption comes fast, and Apple and others have been mentioned to enter this connected car market. This is the new frontier for technological equity scaling and technology brand appeal. Much like what we seen in the earlier models of Blackberry to smartphones, those late in the developmental evolution of their platforms may be forced adrift or implode by the market.

No one is arguing it will happen. Eventually, self-driving cars will arrive.  But for now, it remains a futuristic concept.

What can we do now in the invention, design and development process?

The broader output of manufactured cars will need to continue in leveraging new designs that take in more integration of traditional siloed integration vendors so that the emergence of more unified and centrally managed embedded controls can make its way. Hence, the importance now exists in the DNA of a holistically designed platform fitted with portfolio of processors and security to take on new service models and applications.

This year, we have compiled an interesting mixture of technical articles to support the development and engineering of car access systems, CAN and LIN networks, Ethernet in the car, capacitive interfaces and capacitive proximity measurement.

In parallel to the support of helping map toward the progress and evolution of the connected car, a new era of design exists. One in which the  platform demands embedded controls to evenly match their design characteristics and application use cases. We want to also highlight the highest performing ARM Cortex-M7 based MCU in the market, combining exceptional memory and connectivity options for leading design flexibility. The Atmel | SMART ARM Cortex-M7 family is ideal for automotive, IoT and industrial connectivity markets. These SAM V/E/S family of microcontrollers are the industry’s highest performing Cortex-M microcontrollers enhancing performance, while keeping cost and power consumption in check.

So are you designing for the latest automotive, IoT, or industrial product? Here’s a few things to keep in mind:

  • Optimized for real-time deterministic code execution and low latency peripheral data access
  • Six-stage dual-issue pipeline delivering 1500 CoreMarks at 300MHz
  • Automotive-qualified ARM Cortex-M7 MCUs with Audio Video Bridging (AVB) over Ethernet and Media LB peripheral support (only device in the market today)
  • M7 provides 32-bit floating point DSP capability as well as faster execution times with greater clock speed, floating point and twice the DSP power of the M4

We are taking the connected car design to the next performance level — having high-speed connectivity, high-density on-chip memory, and a solid ecosystem of design engineering tools. Recently, Atmel’s Timothy Grai added a unveiling point to the DSP story in Cortex-M7 processor fabric. True DSPs don’t do control and logical functions well; they generally lack the breadth of peripherals available on MCUs. “The attraction of the M7 is that it does both — DSP functions and control functions — hence it can be classified as a digital signal controller (DSC).” Grai quoted the example of Atmel’s SAM V70 and SAM V71 microcontrollers are used to connect end-nodes like infotainment audio amplifiers to the emerging Ethernet AVB network. In an audio amplifier, you receive a specific audio format that has to be converted, filtered, and modulated to match the requirement for each specific speaker in the car. Ethernet and DSP capabilities are required at the same time.

“The the audio amplifier in infotainment applications is a good example of DSC; a mix of MCU capabilities and peripherals plus DSP capability for audio processing. Most of the time, the main processor does not integrate Ethernet AVB, as the infotainment connectivity is based on Ethernet standard,” Grai said. “Large SoCs, which usually don’t have Ethernet interface, have slow start-up time and high power requirements. Atmel’s SAM V7x MCUs allow fast network start-up and facilitate power moding.”

Atmel has innovative memory technology in its DNA — critical to help fuel connected car and IoT product designers. It allows them to run the multiple communication stacks for applications using the same MCU without adding external memory. Avoiding external memories reduces the PCB footprint, lowers the BOM cost and eliminates the complexity of high-speed PCB design when pushing the performance to a maximum.

Importantly, the Atmel | SMART ARM Cortex-M7 family achieves a 1500 CoreMark Score, delivering superior connectivity options and unique memory architecture that can accommodate the said evolve of the eventual “SoC on wheels” design path for the connected car.

How to get started

  1. Download this white paper detailing how to run more complex algorithms at higher speeds.
  2. Check out the Atmel Automotive Compilation.
  3. Attend hands-on training onboard the Atmel Tech on Tour trailer. Following these sessions, you will walk away with the Atmel | SMART SAM V71 Xplained Ultra Evaluation Kit.
  4. Design the newest wave of embedded systems using SAM E70, SAM S70, or SAM V70 (ideal for automotive, IoT, smart gateways, industrial automation and drone applications, while the auto-grade SAM V70 and SAM V71 are ideal for telematics, audio amplifiers and advanced media connectivity).

IMG_3659

[Images: European Commission, GSMA]

3 design hooks of Atmel MCUs for connected cars


The MPU and MCU worlds are constantly converging and colliding, and the difference between them is not a mere on-off switch — it’s more of a sliding bar. 


In February 2015, BMW reported that it patched the security flaw which could allow hackers to remotely unlock the doors of more than 2 million BMW, Mini and Rolls-Royce vehicles. Earlier, researchers at ADAC, a German motorist association, had demonstrated how they could intercept communications with BMW’s ConnectedDrive telematics service and unlock the doors.

security-needs-for-connected-car-by-atmel

BMW uses SIM card installed in the car to connect to a smartphone app over the Internet. Here, the ADAC researchers created a fake mobile network and tricked nearby cars into taking commands by reverse engineering the BMW’s telematics software.

The BMW hacking episode was a rude awakening for the connected car movement. The fact that prominent features like advanced driver assistance systems (ADAS) are all about safety and security is also a testament is that secure connectivity will be a prime consideration for the Internet of Cars.

Built-in Security

Atmel is confident that it can establish secure connections for the vehicles by merging its security expertise with performance and low-power gains of ARM Cortex-M7 microcontrollers. The San Jose, California-based chip supplier claims to have launched the industry’s first auto-qualified M7-based MCUs with Ethernet AVB and media LB peripherals. In addition, this high-end MCU series for in-vehicle infotainment offers the CAN 2.0 and CAN flexible data rate controller for higher bandwidth requirements.

Nicolas Schieli, Automotive MCU Marketing Director at Atmel, acknowledges that security is something new in the automotive environment that needs to be tackled as cars become more connected. “Anything can connect to the controller area network (CAN) data links.”

Schieli notes that the Cotex-M7 has embedded enhanced security features within its architecture and scalability. On top of that, Atmel is using its years of expertise in Trusted Platform Modules and crypto memories to securely connect cars to the Internet, not to mention the on-chip SHA and AES crypto engines in SAM E70/V70/V71 microcontrollers for encryption of data streams. “These built-in security features accelerate authentication of both firmware and applications.”

Crypto

Schieli notes that the Cotex-M7 has embedded enhanced security features within its architecture and scalability. On top of that, Atmel is using its years of expertise in Trusted Platform Modules and crypto memories to securely connect cars to the Internet, not to mention the on-chip SHA and AES crypto engines in SAM E70/V70/V71 microcontrollers for encryption of data streams. “These built-in security features accelerate authentication of both firmware and applications.”

He explained how the access to the Flash, SRAM, core registers and internal peripherals is blocked to enable security. It’s done either through the SW-DP/JTAG-DP interface or the Fast Flash Programming Interface. The automotive-qualified SAM V70 and V71 microcontrollers support Ethernet AVB and Media LB standards, and they are targeted for in-vehicle infotainment connectivity, audio amplifiers, telematics and head control units companion devices.

Software Support

The second major advantage that Atmel boasts in the connected car environment is software expertise and an ecosystem to support infotainment applications. For instance, a complete automotive Ethernet Audio Video Bridging (AVB) stack is being ported to the SAM V71 microcontrollers.

Software support is a key leverage in highly fragmented markets like automotive electronics. Atmel’s software package encompasses peripheral drivers, open-source middleware and real-time operating system (RTOS) features. The middleware features include USB class drivers, Ethernet stacks, storage file systems and JPEG encoder and decoder.

Next, the company offers support for several RTOS platforms like RTX, embOS, Thread-X, FreeRTOS and NuttX. Atmel also facilitates the software porting of any proprietary or commercial RTOS and middleware. Moreover, the MCU supplier from San Jose features support for specific automotive software such as AUTOSAR and Ethernet AVB stacks.

Atmel supports IDEs such as IAR or ARM MDK and Atmel Studio and it provides a full-featured board that covers all MCU series, including E70, V70 and V71 devices. And, a single board can cover all Atmel microcontrollers. Moreover, the MCU supplier provides Board Support Package for Xplained evaluation kit and easy porting to customer boards through board definition file (board.h).

Beyond that, Atmel is packing more functionality and software features into its M7 microcontrollers. Take SAM V71 devices, for example, which have three software-selectable low-power modes: sleep, wait and backup. In sleep mode, the processor is stopped while all other functions can be kept running. While in wait mode, all clocks and functions are stopped but some peripherals can be configured to wake up the system based on predefined conditions. In backup mode, RTT, RTC and wake-up logic are running. Furthermore, the microcontroller can meet the most stringent key-off requirements while retaining 1Kbyte of SRAM and wake-up on CAN.

Transition from MPU to MCU

Cortex-M7 is pushing the microcontroller performance in the realm of microprocessors. MPUs, which boast memory management unit and can run operating systems like Linux, eventually lead to higher memory costs. “Automakers and systems integrators are increasingly challenged in getting performance point breakthrough because they are running out of Flash capacity,” explained Schieli.

On the other hand, automotive OEMs are trying to squeeze costs in order to bring the connected car riches to non-luxury vehicles, and here M7 microcontrollers can help bring down costs and improve the simplification of car connectivity.

The M7 microcontrollers enable automotive embedded systems without the requirement of a Linux head and can target applications with high performance while running RTOS or bare metal implementation. In other words, M7 opens up avenues for automotive OEMs if they want to make a transition from MPU to MCU for cost benefits.

However, the MPU and MCU worlds are constantly converging and colliding, and the difference between them is not a mere on-off switch. It’s more of a sliding bar. Atmel, having worked on both sides of the fence, can help hardware developers to manage that sliding bar well. “Atmel is using M7 architecture to help bridge the gap between microprocessors and high-end MCUs,” Schieli concludes.


Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

10 (+1) invaluable steps to launching your next IoT product


Let’s transition your products from a ‘dumb’ to ‘smart’ thing.


Many enterprises, startups and organizations have already been exposed to the innovation land grab stemming from the rapidly evolving Internet of Things (IoT). What’s available in the product/market fit arena? This is the hunt to cease some segment of the multi-trillion dollar growth reported to gain from the IoT, enabling embedded system connectivity coupled with the ecosystem value-add of a product or service. Even for that matter, transforming a mere idea that centers around connectivity solutions can present an array of challenges, particularly when one seeks to bring to market disruptive ways for the end-user to adopt from the more traditional way of doing things (e.g. GoPro, PebbleWatch, FitBit, and even to as far as e-health monitors, tire subscriptions, self-driving vehicles, smart bracelets, connected medical apparatus or Industrial Internet devices, home automation systems and more).

All together, there’s one overlaying theme to these Internet-enabled products. They are all pervasively SMART technologies that help monetize the IoT. Now, let’s get your products to transition from a once ordinary, mundane object to a much smarter, more secure “thing.” When doing so, this too can often present a few obstacles for designers, especially as it requires a unique set of skills needed to interface systems with connectivity to the cloud or Internet.

To top it all off, there may already be various product lines in existence that have a mandate to leverage a connected ecosystem/design. In fact, even new ones require connectivity to the cloud, having designs set forth to enhance via customer usage then combining this user data with other associated data points. Already, the development to enable such devices require an assortment of skills. It’s an undertaking, one in which requires knowledge and expertise to command stable connectivity in the infrastructure and design a product with security, scalability, and low power.

Moving ahead, here are some recommendations developers and Makers should know:

  1. Identify a need and market: The value of the smart device lies in in the service that it brings to the customer. Identify the need to develop a strong offer that brings value or enhances efficiency rather than creating a simple gadget. (See Marc Andreesen’s infamous blog on product/market fit for more tips).
  1. Validate your ideation: Carry out market research. Do your due diligence. Determine whether the device you think of creating already exists. Can improvements be ascertained with testimonial as an enhanced or unique experience? Indeed, benchmarking will allow you to discover any competitors, find sources of inspiration, develop a network of ideas to pool and find other areas for improvement as well.
  1. Prototype toward MVP: New device fabrication techniques, such as 3D printing, are the ideal creative validation for producing prototypes much faster and for less money. They also promote iteration, which is an integral process when designing the device towards MVP.
  1. Connect the ‘thing’ then concert it into a smart ‘thing:’ Right now, there is no mandatory standard for interconnecting different devices. Selecting the right technology is essential, particularly if the device requires low-power (speaking of low-power….) and event and state controls, which highly optimize extended power and the services to enrich the information system and eventally enhance user experience with a roadmap toward an ecosystem.
  1. Develop the application: Today, the primary smart devices are linked to an dedicated mobile app. Since the app transforms the smartphone into a remote control, it must be be easy to use for your end-users, and more importantly, simply upgraded via the cloud.
  1. Manage the data: Fitted with a multitude of sensors, connected gadgets generate an enormous amount of data that need to be processed and stored with the utmost security across all layers even to as far as using cryptography in memory. (After all, you don’t want your design become a ‘Tales from the Crypt-O” horror story.) 
  1. Analyze and exploit the data: By processing and analyzing the data, a company can extract the necessary information to deploy the right service in the right place at the right time.
  1. Measure the impact of the smart device: Set up probes to monitor your devices and data traffic quality. Answer questions objectively as to how it would securely scale and evolve should there be an instant high volume success and usage. This will help you measure the impact of the smart device in real time and adapt its actions accordingly, and model into the product roadmap and MVP spec.
  1. Iterate to fine-tune the device’s use: After launching the project, the process has only begun. Feedback needs to be taken into account in order to adjust and fine-tune the project. Due to its very nature, digital technology requires continuous adaptation and iteration. “Try and learn” and present riskier ideas to products are the fundamental principles behind transformation when imposing a new use.
  1. Prototype again: Continuous adaptation and iteration means that your company needs to produce a new prototype.
Here’s 10 + 1 invaluable Step to Launching Your IoT Project or Products

Here’s 10 + 1 invaluable steps to launching your IoT project or product.

11. Take advantage of the hands-on training in your region.

As an application space, IoT sensor nodes are enabled by a number of fundamental technologies, namely a low-power MCU, some form of wireless communication and strong security. With this in mind, the newly revealed Atmel IoT Secure Hello World series will offer attendees hands-on training, introducing them to some of the core technologies making the Internet of Things possible, including Wi-Fi and CryptoAuthentication.

What’s more, these sessions will showcase Atmel’s diverse Wi-Fi capabilities and CryptoAuthentication hardware key storage in the context of the simplest possible use cases. This includes learning how to send temperature information to any mobile device via a wireless network and how to enable the remote control of LEDs on a SAM D21 Xplained Pro board over a Wi-Fi network using a WINC1500. In addition, attendees will explore authentication of IoT nodes, as well as how to implement a secure communications link — something that will surely come in handy when preparing to launch your next smart product.

As you can see, so far, everyone is LOVING the Hello World sessions — from hardcore embedded engineers to hobbyists. Here some recent social activity following the recent Tech on Tour events in both Manchester and Heathrow, UK. Need we say more? These tweets say a thousand words!

Atmel-Tech-On-Tour-Europe-UK

Connected and ready to go… all before lunch! (Yes, there’s food as well!)

 

Atmel-Tech-On-Tour-Europe-BYOD

Atmel’s Tech on Tour and proud partner EBV Elektronik proudly thankful for the successful event in Manchester, UK.

 

Atmel-Tech-On-Tour-Europe

Atmel’s Tech on Tour just successfully completed a full house attendance training in Manchester, UK

 

Find out how you too can receive in-depth IoT training. As the Atmel | Tech on Tour makes it way throughout Europe, Asia, and North America, make sure you know when the team arrives in your town!  Don’t miss it. Upon registering, you will even receive a WINC1500 Xplained Pro Starter Kit to take home.

The 10 challenges of securing IoT communications


From the very beginning of developing an IoT product, IoT security must be a forethought.


One of the hottest topics at last week’s IoT StreamConf was security. In other words, how are we going to secure communication for billions of connected devices? How can we ensure that attackers can’t take control of our devices, steal information, disrupt services, or take down entire networks of expensive, imperative devices?

With IoT is still in its early stages, security is not fully understood and well-defined when compared to other industries, like the financial and e-commerce sectors. From the very beginning of developing an IoT product, whether it’s small-scale like a wearable device, to massive-scale IoT deployments, like an oil field sensor network or global delivery operation, IoT security must be a forethought.

10-challenges-securing-IoT-PubNub-Atmel

In this talk, Rohini Pandhi, Product Manager at PubNub, walks through the ten challenges of securing Internet of Things communication. Rohini discusses flexible and secure messaging design patterns for IoT communication, and how they can be implemented and scaled. There are a number of security considerations, but after watching this talk, you should have a good idea of how you can secure your IoT deployment.

(Scroll below video for a table of contents of when individual concepts are talked about in the video).

Video Table of Contents

  1. Defining the Internet of Things (10:27)
  2. Unprotected devices will be attacked (13:15)
  3. Encryption (15:46)
  4. Single security model for all communications (17:56)
  5. Access control (20:13)
  6. Tracking device metadata (21:14)
  7. Provisioning in the field (22:38)
  8. Firmware updates in the field (24:07)
  9. Compliance with regulations (25:15)
  10. Reinventing the wheel (26:17)

More Resources on Securing IoT Communication

Below are a couple great pieces on IoT security, and some code tutorials for IoT developers:

4 reasons why Atmel is ready to ride the IoT wave


The IoT recipe comprises of three key technology components: Sensing, computing and communications.


In 2014, a Goldman Sachs’ report took many people by surprise when it picked Atmel Corporation as the company best positioned to take advantage of the rising Internet of Things (IoT) tsunami. At the same time, the report omitted tech industry giants like Apple and Google from the list of companies that could make a significant impact on the rapidly expanding IoT business. So what makes Atmel so special in the IoT arena?

The San Jose, California–based chipmaker has been proactively building its ‘SMART’ brand of 32-bit ARM-based microcontrollers that boasts an end-to-end design platform for connected devices in the IoT realm. The company with two decades of experience in the MCU business was among the first to license ARM’s low-power processors for IoT chips that target smart home, industrial automation, wearable electronics and more.

Atmel and IoT (Internet of Things)

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market.

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market

A closer look at the IoT ingredients and Atmel’s product portfolio shows why Goldman Sachs called Atmel a leader in the IoT space. For starters, Atmel is among the handful of chipmakers that cover all the bases in IoT hardware value chain: MCUs, sensors and wireless connectivity.

1. A Complete IoT Recipe

The IoT recipe comprises of three key technology components: Sensing, computing and communications. Atmel offers sensor products and is a market leader in MCU-centric sensor fusion solutions than encompass context awareness, embedded vision, biometric recognition, etc.

For computation—handling tasks related to signal processing, bit manipulation, encryption, etc.—the chipmaker from Silicon Valley has been offering a diverse array of ARM-based microcontrollers for connected devices in the IoT space.

Atmel-IoT-Low-Power-wearable

Atmel has reaffirmed its IoT commitment through a number of acquisitions.

Finally, for wireless connectivity, Atmel has cobbled a broad portfolio made up of low-power Wi-Fi, Bluetooth and Zigbee radio technologies. Atmel’s $140 million acquisition of Newport Media in 2014 was a bid to accelerate the development of low-power Wi-Fi and Bluetooth chips for IoT applications. Moreover, Atmel could use Newport’s product expertise in Wi-Fi communications for TV tuners to make TV an integral part of the smart home solutions.

Furthermore, communications across the Internet depends on the TCP/IP stack, which is a 32-bit protocol for transmitting packets on the Internet. Atmel’s microcontrollers are based on 32-bit ARM cores and are well suited for TCP/IP-centric Internet communications fabric.

2. Low Power Leadership

In February 2014, Atmel announced the entry-level ARM Cortex M0+-based microcontrollers for the IoT market. The SAM D series of low-power MCUs—comprising of D21, D10 and D11 versions—featured Atmel’s signature high-end features like peripheral touch controller, USB interface and SERCOM module. The connected peripherals work flawlessly with Cortex M0+ CPU through the Event System that allows system developers to chain events in software and use an event to trigger a peripheral without CPU involvement.

According to Andreas Eieland, Director of Product Marketing for Atmel’s MCU Business Unit, the IoT design is largely about three things: Battery life, cost and ease-of-use. The SAM D microcontrollers aim to bring the ease-of-use and price-to-performance ratio to the IoT products like smartwatches where energy efficiency is crucial. Atmel’s SAM D family of microcontrollers was steadily building a case for IoT market when the company’s SAM L21 microcontroller rocked the semiconductor industry in March 2015 by claiming the leadership in low-power Cortex-M IoT design.

Atmel’s SAM L21 became the lowest power ARM Cortex-M microcontroller when it topped the EEMBC benchmark measurements. It’s plausible that another MCU maker takes over the EEMBC benchmarks in the coming months. However, according to Atmel’s Eieland, what’s important is the range of power-saving options that an MCU can bring to product developers.

“There are many avenues to go down on the low path, but they are getting complex,” Eieland added. He quoted features like multiple clock domains, event management system and sleepwalking that provide additional levels of configurability for IoT product developers. Such a set of low-power technologies that evolves in successive MCU families can provide product developers with a common platform and a control on their initiatives to lower power consumption.

3. Coping with Digital Insecurity

In the IoT environment, multiple device types communicate with each other over a multitude of wireless interfaces like Wi-Fi and Bluetooth Low Energy. And IoT product developers are largely on their own when it comes to securing the system. The IoT security is a new domain with few standards and IoT product developers heavily rely on the security expertise of chip suppliers.

Atmel offers embedded security solutions for IoT designs.

Atmel, with many years of experience in crypto hardware and Trusted Platform Modules, is among the first to offer specialized security hardware for the IoT market. It has recently shipped a crypto authentication device that has integrated the Elliptic Curve Diffie-Hellman (ECDH) security protocol. Atmel’s ATECC508A chip provides confidentiality, data integrity and authentication in systems with MCUs or MPUs running encryption/decryption algorithms like AES in software.

4. Power of the Platform

The popularity of 8-bit AVR microcontrollers is a testament to the power of the platform; once you learn to work on one MCU, you can work on any of the AVR family microcontrollers. And same goes for Atmel’s Smart family of microcontrollers aimed for the IoT market. While ARM shows a similarity among its processors, Atmel exhibits the same trait in the use of its peripherals.

Low-power SAM L21 builds on features of SAM D MCUs.

A design engineer can conveniently work on Cortex-M3 and Cortex -M0+ processor after having learned the instruction set for Cortex-M4. Likewise, Atmel’s set of peripherals for low-power IoT applications complements the ARM core benefits. Atmel’s standard features like sleep modes, sleepwalking and event system are optimized for ultra-low-power use, and they can extend IoT battery lifetime from years to decades.

Atmel, a semiconductor outfit once focused on memory and standard products, began its transformation toward becoming an MCU company about eight years ago. That’s when it also started to build a broad portfolio of wireless connectivity solutions. In retrospect, those were all the right moves. Fast forward to 2015, Atmel seems ready to ride on the market wave created by the IoT technology juggernaut.

Interested? You may also want to read:

Atmel’s L21 MCU for IoT Tops Low Power Benchmark

Atmel’s New Car MCU Tips Imminent SoC Journey

Atmel’s Sensor Hub Ready to Wear


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Revolar is a smart wearable device that’ll keep you safe


A small wearable to solve a big problem.


At one point or another, we’ve all been (or will one day be) in a situation where we do not feel safe and have limited access to loved ones. And as scary as it may sound, one in five women in America will be sexually assaulted in their lifetime. Designed to eradicate this statistic and to help spur a more security-conscious society, Revolar is a new wearable device that syncs with a smartphone’s emergency contacts via Bluetooth and acts as a “magic button” that sends out an SOS with a user’s exact GPS location.

a485c907f286d10ef74d2b3598ec0263_original

The idea was first conceived by Revolar’s founder Jacqueline Ros after her sister was attacked multiple times before the age of 17. Subsequently, Ros was determined to find a solution and curb these sort of occurrences from ever happening again.

Just about the size of a quarter, Revolar can be discreetly placed just about anywhere, from a piece of jewelry, to a pocketbook or backpack, to a shirt or jacket collar. The device itself is comprised of two components: a communications module and its hard shell casing. Revolar features a drop-in system that also lets users to take the module and interchange it into a differently colored shell — currently available in white, blue and black — so that it can match with nearly any sort of attire.

b10e8fe511bb62022290f20466a2716e_original

How it works is easy. First, the unit is attached to an article of clothing, accessory or keychain. A user then inputs his or her emergency contacts into the Revolar mobile app. Only if and when assistance is required, the button is pressed. This sends the wearer’s exact GPS location to its respective recipients.

What’s nice, Revolar can be used by nearly everyone — kids can input the contact information of their parents or caregivers, campus police for college students, or colleagues for business travelers when abroad. Once activated, the user’s mobile phone will automatically switch phone settings to silent, if desired. As soon as a user feels safe, they can simply turn off the alert using their app PIN, and friends and family will be notified with a message that they are indeed okay.

501ff4da995553e61a394aac586848de_original

“Our technology is built upon the most innovative Internet on Things Security Platform, which assures the integrity and confidentiality of our users data while enabling rapid development. This technology also enables secure device-to-device communications management,” the team writes.

Built around Atmel CryptoAuthentication devices, Revolar packs a whole lot of security features for such a tiny gadget. For one, users can take comfort in knowing that each wearable unit is as unique as the wearer themselves and cannot be cloned. Because of its chain of security, devices cannot be impersonated on the network either. Beyond that, data being communicated between each Revolar cannot be intercepted or manipulated by a third party.

Sound like something you or a loved one would like? Head over to Revolar’s official Kickstarter page, where the team is currently seeking $75,000. If all goes to plan, shipment is expected to begin early spring 2016.

Atmel’s SAM L21 MCU for IoT tops low power benchmark


SAM L21 MCUs consume less than 940nA with full 40kB SRAM retention, real-time clock and calendar, and 200nA in the deepest sleep mode.


The Internet of Things (IoT) juggernaut has unleashed a flurry of low-power microcontrollers, and in that array of energy-efficient MCUs, one product has earned the crown jewel of being the lowest-power Cortex M-based solution with power consumption down to 35µA/MHz in active mode and 200nA in sleep mode.

How do we know if Atmel’s SAM L21 microcontroller can actually claim the leadership in ultra-low-power processing movement? The answer lies in the EEMBC ULPBench power benchmark that was introduced last year. It ensures a level playing field in executing the benchmark by having the MCU perform 20,000 clock cycles of active work once a second and sleep the remainder of the second.

 

 ULPBench shows SAM L21 is lower power than any of its competitor's M0+ class chips

ULPBench shows SAM L21 is lower power than any of its competitor’s M0+ class chips.

Atmel has released the ultra-low-power SAM L21 MCU it demonstrated at Electronica in Munich, Germany back in November 2014. Architectural innovations in the SAM L21 MCU family enable low-power peripherals — including timers, serial communications and capacitive touch sensing — to remain powered and running while the rest of the system is in a reduced power mode. That further reduces power consumption for always-on applications such as fire alarms, healthcare, medical and connected wearables.

Next, the 32-bit ARM-based MCU portfolio combines ultra-low-power with Flash and SRAM that are large enough to run both the application and wireless stacks. Collectively, these three features make up the basic recipe for battery-powered mobile and IoT devices for extending their battery life from years to decades. Moreover, they reduce the number of times batteries need to be changed in a plethora of IoT applications.

Low Power Leap of Faith

Atmel’s SAM L21 microcontrollers have achieved a staggering 185.8 ULPBench score, which is way ahead of runner-up TI’s SimpleLink C26xx microcontroller family that scored 143.6. The SAM L21 microcontrollers consume less than 940nA with full 40kB SRAM retention, real-time clock and calendar, and 200nA in the deepest sleep mode. According to Atmel spokesperson, it comes down to one-third the power of competing solutions.

Markus Levy, President and Founder of EEMBC, credits Atmel’s low-power feat to its proprietary picoPower technology and the company’s low-power expertise in utilizing DC-DC conversion for voltage monitoring. Atmel’s picoPower technology employs flexible clocking options and short wake-up time with multiple wake-up sources from even the deepest sleep modes.

ULPBench aims to provide developers with a reliable methodology to test MCUs

ULPBench aims to provide developers with a reliable methodology to test MCUs.

In other words, Atmel has taken the low-power game beyond architectural improvements to the CPU while optimizing nearly every peripheral to operate in standalone mode and then use a minimum number of transistors to complete the given task. Most lower-power ARM chips simply disable the clock to various parts of the device. The SAM L21 microcontroller, on the other hand, turns off power to those chip parts; hence, there is no leakage current in thousands of transistors in that part.

Here is a brief highlight of Atmel’s low-power development efforts that now encompass almost every peripheral in an MCU device:

Sleep Modes

Sleep modes not only gate away the clock signal to stop switching consumption, but also remove the power from sub-domains to fully eliminate leakage. Atmel also employs SRAM back-biasing to reduce leakage in sleep modes.

Consider a simple application where the temperature in a room is monitored using a temperature sensor with the analog-to-digital converter (ADC). In order to reduce the power consumption, the CPU would be put to sleep and wake up periodically on interrupts from a real-time counter (RTC). The measured sensor data is checked against a predefined threshold to decide on further action. If the data does not exceed the threshold, the CPU will be put back to sleep waiting for the next RTC interrupt.

SleepWalking

SleepWalking is a technology that enables peripherals to request a clock when needed to wake-up from sleep modes and perform tasks without having to power up the CPU Flash and other support systems. For instance, Atmel’s ultra-low-power capacitive touch-sensing peripheral can run in all operating modes and supports wake-up on a touch.

For the temperature monitoring application, as mentioned above, this means that the ADC’s peripheral clock will only be running when the ADC is converting. When the ADC receives the overflow event from the RTC, it will request its generic clock from the generic clock controller and peripheral clock will stop as soon as the ADC conversion is completed.

Event System

The Event System allows peripherals to communicate directly without involving the CPU and thus enables peripherals to work together to solve complex tasks using minimal gates. It allows system developers to chain events in software and use an event to trigger a peripheral without CPU involvement.

Again, taking temperature monitor as a use case, the RTC must be set to generate an overflow event, which is routed to the ADC by configuring the Event System. The ADC must be configured to start a conversion when it receives an event. By using the Event System, an RTC overflow can trigger an ADC conversion without waking up the CPU. Moreover, the ADC can be configured to generate an interrupt if the threshold is exceeded, and the interrupt will wake up the CPU.

533

Low Power MCU Use Case

Paul Rako has mentioned a sensor monitor in his recent post in Atmel’s Bits & Pieces blog. Rako writes in his post titled “The SAM L21 pushes the boundaries of low power MCUs” about this sensor monitor being asleep 99.99 percent of the time, waking up once a day to take a measurement and send it wirelessly to a host. Such tasks can be conveniently handled by an 8-bit device.

However, moving to IoT applications, which constitute protocol stacks, there is number crunching involved and that requires a faster ARM-class 32-bit chip. So, for battery-powered IoT applications, Rako makes the case for 32-bit ARM-based chip that can wake up, do its thing, and go back to sleep. If a high-current chip wakes up 10 times faster but uses twice the power, it will still use less energy and less charge than the slower chip.

Next, Rako presents sensor fusion hub as a case study in which the device saves power by skipping the radio chip to send the data from each sensor and instead uses the ARM-based microcontroller that does the math and pre-processing to combine the raw data from all sensors and then assembles the result as a simple chunk of data.

Atmel has scored an important design victory in the ongoing low-power game that is now prevalent in the rapidly expanding IoT market. Atmel already boasts credentials in the connectivity and security domains — the other two key IoT building blocks. Its connectivity solutions cover multiple wireless arenas — Bluetooth, Wi-Fi, Zigbee and 6LoWPan — to enable IoT communications.

Likewise, Atmel’s CryptoAuthentication devices come with protected hardware key storage and are available with SHA256, AES128 or ECC256/283 cryptography. The IoT triumvirate of low power consumption, broad connectivity portfolio and crypto engineering puts Atmel in a strong position in the promising new market of IoT that is increasingly demanding low power portfolio of MCUs to be matched with high performance.


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Securing the Internet of Streams


The evolution of IoT is now at a point that it will require a comprehensively redesigned approach to security threats in order to ensure its continuous growth and expansion.


The relentless flow of new product introductions keeps fueling the gargantuan estimates of billions of connected communicating computing devices which is projected to imminently make the Internet of Things ubiquitous within every facet of our lives. The IoT has been portrayed as the key enabler of a smarter world with compelling use cases that cut across a wide array of both personal and industrial ecosystems.

A great description is that the IoT is the global nervous system. This could be a pun, as IoT is increasingly producing troubling headlines. Stories abound, detailing security breaches that sound as if they were taken from a sci-fi movie, from hacked security cameras to a spamming refrigerator.

IoT-Global-Nervous-System

Figure 1 (Source: re-workblog.tumblr.com)

The explosive growth of the IoT coincides with an alarming increase in reported rates of identity theft and hacker attacks on everyday gadgets and appliances. Security researchers have easily established the feasibility of attacks against TVs, cars, security cameras, and medical equipment. There is much more than stolen money on the line if these types of attacks are carried out. The evidence demonstrates that existing security mechanisms are insufficient or ill-suited to address the risks inherent with the ubiquitous deployment of the IoT.

The need for a new original approach

The traditional approach to security, applied to both consumer and business domains, is one of separation – preventing those who are considered bad actors from accessing devices and networks. However, the dynamic topology of the network environments in which IoT applications are deployed largely invalidates the separation approach, making it both impractical and overly rigid. For example, with BYOD (bring-your-own-device), enterprises struggle to apply traditional security schemes to devices that may have been compromised while outside the perimeter firewall.

Many IoT devices self-configure and run autonomously. User interaction is limited to the devices’ operations, and there are no means to change security parameters. These devices rely on the manufacturer to implement security, both in the hardware and the software.

Moreover, manufacturers have to consider the broader ecosystem, not just their own products. For example, recent research has revealed inherent security flaws in USB memory stick controller hardware and firmware. Users must be concerned not only about the safety of the data on the memory stick, but if the memory stick controller itself has somehow been compromised.

To thwart similar issues, IoT device vendors are rushing to upgrade their product portfolios to low-power, high-performance microcontrollers that include firmware upgrade and data encryption mechanisms.

Atmel's IoT Layered Security Solutions

Figure 2 (Source: Atmel’s White Paper: Integrating the Internet of Things)

In the hyper-connected world of IoT, security breaches will gravitate towards the weakest link in the chain. It will become very hard to maintain the confidence that any particular device, user, application or service maintains its integrity; instead, the assumption will be that things will occasionally break for a variety of reasons, over which there is little control and no method for fixing. As a result, IoT will force the adoption of new concepts for the establishment of trust.

A smarter network combined

In the loosely coupled world of IoT, security issues are driving a need for greater collaboration among the vendors participating in the ecosystem, recognizing their respective core competencies. Hardware vendors make devices smarter. Software developers make applications and services smarter. The connective tissue, the global Internet with its myriad of communication transports and protocols, is tasked with carrying the data that powers IoT. This begs the question – can the network be made an enabler of IoT security by becoming smarter in its own right?

Context is essential for identifying and handling security threats and is best understood at the application level, where the intent of information is processed. This points towards a higher-level communication framework for IoT – the Internet of Data Streams. This framework enables apps and services to view things as consumers and producers of data. It allows for descriptive representations of devices’ operational status and real-time detection of their presence or absence.

Elevating the functional value of the Internet, from a medium of communication to a network of data streams for IoT, would be highly beneficial to ease collaboration among the IoT ecosystem participants. The smarter network can provide apps and services with the ability to implement logic that detects things that break or misbehave, flagging them as suspect while ensuring graceful and consistent operation using the redundant resources.

InternetOfThingsHorizontal

For example, a smarter network can detect that a connected sensor stopped functioning (e.g. due to a denial of power attack, possibly triggered through some obscure security loophole) and allow the apps that depend on the sensor to provide uninterrupted service to users. Additionally, a network of data streams can foster a global industry of security-as-a-service solutions, which can, as an example, send real-time security alerts to app administrators and device manufacturers.

The evolution of IoT is now at a point that it will require a comprehensively redesigned approach to security threats in order to ensure its continuous growth and expansion. Addressing the surfaced issues from an ecosystem standpoint calls for apps, services and “things” to explicitly handle communication via a smarter data network, which has the promise of placing IoT in safer hands, courtesy of the Internet of Streams.

Electronica 2014 may be the ‘smartest’ show yet!

As we prepare to head off to Munich, Germany for perhaps one of the ’smartest’ shows of the year, Electronica 2014 attendees are in for a treat! Over the next couple of days, we will be unveiling a number of new solutions to further enable smart, connected and secure devices for the ever-growing Internet of Things (IoT) — ranging from consumer and industrial to automotive and Maker applications.

electronicaGoogle+_1080x608_Final

During the week of November 11-14, head over to Messe München where you will find a plethora of IoT solutions in the Atmel booth — located in Hall A5, Booth 542 — including:

Low-power embedded processing

  • Industry’s lowest power ARM Cortex-M0+ MCU for the Internet of Things
  • A new QTouch safety platform for home appliance user interfaces
  • Next-generation 8-bit AVR MCUs accelerating development of low-power applications

Secure connectivity

Easy-to-use software and tool

  • IAR Systems supports Atmel’s complete microcontroller portfolio, expanding Atmel’s IoT software and tools ecosystem
  • An ultra-low cost Xplained mini development platform available for only $8.88 USD that is compatible with any Atmel 8-bit megaAVR MCUs
  • Xplained Ultra evaluation kit for fast prototyping and evaluation of Atmel | SMART SAMA5D4 Cortex-A5 based MPUs
  • A security module compatible with all Xplained boards that supports SHA256, AES128 and ECC256 hardware authentication for IoT nodes

Our broad portfolio of next-gen tech powering the Internet of Things will be showcased at Electronica in various pods, such as the smart home, industrial, automotive, and of course, Maker areas.

Atmel’s SMART HOME ZONE brings more intelligent, connected devices together.

  • Showcasing hardware security with wireless connectivity to a variety of edge nodes applications, the well-received Atmel WINC1500 will demonstrate a video camera, temperature sensor and LED control highlighting ease-of-use connectivity to mobile handsets and cloud architecture. Strong key protection is provided by the ATEC108 Elliptic Curve security chip.
  • For the intelligent home, this demonstration highlights Atmel’s popular AVR architecture using a mega168PB, AT86RF212, XMEGA128A1U and MXT143. The demo showcases an AVR with a wireless connection running on a battery with a graphical display.
  • The QTouch safety robustness demonstration showcases Atmel’s SAM D20 with the company’s new QTouch safety library, displaying the superior capacitive touch performance of the peripheral touch controller while achieving best-in-class noise immunity and moisture tolerance required in home appliances. Attendees can enter to win one of the QTouch safety evaluation kits by viewing the demonstration.
  • Demonstrating security for the connected world, this three-light switch demo communicates via ZigBee to a remote panel with 3 LEDs. The switches and LEDs include an Atmel ATSHA204 device with stored crypto keys. When the switch is flipped, only the LEDs with the corresponding key will light—demonstrating symmetric authentication.
  • Showcasing the latest lighting solutions, the Philips Hue LED colormix bulb, the Philips Lux dimmable bulb and the Philips Tap switch highlights how users can create their own personal wireless lighting environment with the tap of a switch or through an app on the users’ mobile device.

Atmel’s INDUSTRIAL ZONE enables smart, machine-to-machine connections.

  • Demonstrating a smart fridge, this home automation demonstration powered by Atmel | SMART SAMA5D4 includes a 7-inch capacitive touchscreen that includes a 720p video playback showcasing the processors performance and data processing in a secure environment.
  • Powered by Atmel’s maXTouch mXT1666T2 and maXStylus, this rugged Inari10 tablet demonstrates support of a glove, moisture rejection and support for maXStylus.
  • Through a Sigfox base station, this demo utilizes Atmel’s ATA8520 and ATA8510 to demonstrate the company’s IoT connectivity solution.
  • Highlighting Atmel’s support of capacitive touch buttons, sliders and wheels using the company’s QTouch technologies, Atmel will showcase two QTouch demos. The first is powered by the Atmel | SMART SAM D21 MCU on an Xplained Pro board demonstrating mutual capacitance and the intelligent peripheral touch controller—all enabled by Atmel QTouch. The second demo, powered by the Atmel | SMART SAM D11 MCU, is supported by the QTouch Library enabling capacitive touch button sliders and wheels on smaller, lower cost Atmel MCUs using the Peripheral Touch Controller.

Atmel’s AUTOMOTIVE ZONE brings IoT to the connected car with simple, touch-enabled human-machine interface.

  • Showcasing a smart, connected car, Atmel will be highlighting the well-received AvantCar demo, a next-generation automotive center console concept with curved touchscreens highlighting Atmel’s XSense, maXTouch, QTouch, and 8-bit AVR MCU technologies.
  • Highlighting car access, this demo will enable passive entry and passive start for automobiles through capacitive touch and proximity detection technology controlled by a tablet PC using Atmel’s maXTouch technologies. This demo is powered by Atmel’s automotive devices including the ATA5791, ATA5831, ATA5702, ATA5790N, ATA5833 and Atmel | SMART SAM D21.
  • Several other automotive demos are also featured in this zone, including a door handle powered by Atmel’s fourth generation LIN device that includes a curved touch-enabled glass display, providing excellent multi-touch performance for future automotive applications, and utilizing Atmel’s XSense and the maXTouch 2952T.

Atmel’s MAKER ZONE showcases IoT inventions, enabling unlimited possibilities.

  • Being at the core of the Maker Movement, Atmel will be showcasing a number of Maker demonstrations including a remote-controlled Maker Robot powered by the Atmel | SMART SAM D21. “Mr. Abot” will be controlled through an Andriod app and the communications will be driven through Atmel’s recently announced new WINC1500 Wi-Fi solution.
  • Atmel will also be showcasing a Skittles sorting machine for the candy lover. This Atmel | SMART powered sorter uses the SAM D21 device and will sort the Skittles into individual containers by color using an RGB light sensor.

Wait, there’s more!

In the wake of recent incidents, it is becoming increasingly clear that embedded system insecurity affects everyone and every company. On a personal level, these vulnerabilities can lead to a breach in unprivileged financial and medical data. For a company, the impact can be quite profound. Products can be cloned, software copied, systems tampered with and spied on, and many other things that can lead to revenue loss, increased liability, and diminished brand equity.

Atmel’s resident security expert Kerry Maletsky will be address these growing concerns in his session, “IoT Security Should Be Hard, By Definition.” Join Maletsky on Thursday, November 13 at 2:00pm CET in Hall A6 / A6.353 at the Embedded Forum as he explores the basics of hardened security in every designer’s IoT device.