Tag Archives: Atmel CryptoAuthentication products

Securing the Internet of Streams


The evolution of IoT is now at a point that it will require a comprehensively redesigned approach to security threats in order to ensure its continuous growth and expansion.


The relentless flow of new product introductions keeps fueling the gargantuan estimates of billions of connected communicating computing devices which is projected to imminently make the Internet of Things ubiquitous within every facet of our lives. The IoT has been portrayed as the key enabler of a smarter world with compelling use cases that cut across a wide array of both personal and industrial ecosystems.

A great description is that the IoT is the global nervous system. This could be a pun, as IoT is increasingly producing troubling headlines. Stories abound, detailing security breaches that sound as if they were taken from a sci-fi movie, from hacked security cameras to a spamming refrigerator.

IoT-Global-Nervous-System

Figure 1 (Source: re-workblog.tumblr.com)

The explosive growth of the IoT coincides with an alarming increase in reported rates of identity theft and hacker attacks on everyday gadgets and appliances. Security researchers have easily established the feasibility of attacks against TVs, cars, security cameras, and medical equipment. There is much more than stolen money on the line if these types of attacks are carried out. The evidence demonstrates that existing security mechanisms are insufficient or ill-suited to address the risks inherent with the ubiquitous deployment of the IoT.

The need for a new original approach

The traditional approach to security, applied to both consumer and business domains, is one of separation – preventing those who are considered bad actors from accessing devices and networks. However, the dynamic topology of the network environments in which IoT applications are deployed largely invalidates the separation approach, making it both impractical and overly rigid. For example, with BYOD (bring-your-own-device), enterprises struggle to apply traditional security schemes to devices that may have been compromised while outside the perimeter firewall.

Many IoT devices self-configure and run autonomously. User interaction is limited to the devices’ operations, and there are no means to change security parameters. These devices rely on the manufacturer to implement security, both in the hardware and the software.

Moreover, manufacturers have to consider the broader ecosystem, not just their own products. For example, recent research has revealed inherent security flaws in USB memory stick controller hardware and firmware. Users must be concerned not only about the safety of the data on the memory stick, but if the memory stick controller itself has somehow been compromised.

To thwart similar issues, IoT device vendors are rushing to upgrade their product portfolios to low-power, high-performance microcontrollers that include firmware upgrade and data encryption mechanisms.

Atmel's IoT Layered Security Solutions

Figure 2 (Source: Atmel’s White Paper: Integrating the Internet of Things)

In the hyper-connected world of IoT, security breaches will gravitate towards the weakest link in the chain. It will become very hard to maintain the confidence that any particular device, user, application or service maintains its integrity; instead, the assumption will be that things will occasionally break for a variety of reasons, over which there is little control and no method for fixing. As a result, IoT will force the adoption of new concepts for the establishment of trust.

A smarter network combined

In the loosely coupled world of IoT, security issues are driving a need for greater collaboration among the vendors participating in the ecosystem, recognizing their respective core competencies. Hardware vendors make devices smarter. Software developers make applications and services smarter. The connective tissue, the global Internet with its myriad of communication transports and protocols, is tasked with carrying the data that powers IoT. This begs the question – can the network be made an enabler of IoT security by becoming smarter in its own right?

Context is essential for identifying and handling security threats and is best understood at the application level, where the intent of information is processed. This points towards a higher-level communication framework for IoT – the Internet of Data Streams. This framework enables apps and services to view things as consumers and producers of data. It allows for descriptive representations of devices’ operational status and real-time detection of their presence or absence.

Elevating the functional value of the Internet, from a medium of communication to a network of data streams for IoT, would be highly beneficial to ease collaboration among the IoT ecosystem participants. The smarter network can provide apps and services with the ability to implement logic that detects things that break or misbehave, flagging them as suspect while ensuring graceful and consistent operation using the redundant resources.

InternetOfThingsHorizontal

For example, a smarter network can detect that a connected sensor stopped functioning (e.g. due to a denial of power attack, possibly triggered through some obscure security loophole) and allow the apps that depend on the sensor to provide uninterrupted service to users. Additionally, a network of data streams can foster a global industry of security-as-a-service solutions, which can, as an example, send real-time security alerts to app administrators and device manufacturers.

The evolution of IoT is now at a point that it will require a comprehensively redesigned approach to security threats in order to ensure its continuous growth and expansion. Addressing the surfaced issues from an ecosystem standpoint calls for apps, services and “things” to explicitly handle communication via a smarter data network, which has the promise of placing IoT in safer hands, courtesy of the Internet of Streams.

Take a drive on the IoT with V2V

What platform has become the most sophisticated and intimate personal electronic environment ever? The car. To paraphrase a famous automotive company’s top executive, car companies are transforming the car into a powerful smartphone that allows drivers to carry around, customize, and interact with their digital world. Automotive electronics are currently centered around people (infotainment and communications) and the machine itself (to run the car and provide safety and convenience). Now a third element is emerging; namely, Vehicle-to-Vehicle (V2V) communications. 

Just like that sounds, cars will soon “talk and listen” to one another — automatically. They will share information like proximity, speed, direction, road conditions, as well as other things that have yet to been imagined. The chief driver of V2V is signaling impending collisions so that the cars can automatically take countermeasures. That, of course, means the V2V network will become a critical technology for self- and assisted-driving cars.

V2V

While it may seem revolutionary, V2V is really an evolutionary branch of Internet of Things (IoT) technologies, which are creating a world where smart, secure, and communicating, sensors will become ubiquitous in planes, trains, and automobiles; inside homes; inside commercial buildings; on highways; in cities and towns; in agriculture; in factories; in retail spaces; and worn by and implanted in humans and animals. The Internet of Things could eventually connect everything from cars to cats.

A term that is being used to describe the technologies making such a smart, sensor saturated world is “sensor dust,” which captures the Zeitgeist that super tiny, smart, communicating sensors will be everywhere — like dust.  Sensors, of course, are never just sensors. They are always connected to other things–mainly microcontrollers (MCUs). With the advent of ultra-low power and energy harvesting technology, the sensor-MCU combination has become an ideal, clear, and present foundation for widespread sensor roll out. Sensing often implies by its very nature detection and communication from a distance, and that is where wireless communication comes into play.

The dark side is that remote sensing and communication open the door very wide for bad actors who want to intercept, spoof, and misuse the data streaming freely through the air. So, security (encryption and/or authentication) becomes the final piece of the picture, and arguably the element that makes IoT even possible to be widely adopted. Huge amounts of information are already being collected every day about traffic flow from phone users worldwide (without their knowing it). Such storehouses of data can be mined real time and used to provide personal traffic reports to subscribers while driving. At least that is the story. As the car moves from one place to the other, social networking can be effectuated in real time to locate friends or certain activities and happenings (automotive flash-mob, anyone?). But, what consumers really want their whereabouts and other information out in the open in a completely uncontrolled way? No one. People are becoming extremely sensitive to data insecurity and there is a growing need to trust how the information that is being collected will be used. Without some type of trust, the IoT could be doomed. Maybe the term “Internet of Trust” should be coined to make that point obvious.

Internet of Trust

V2V & IoT

The evolution of V2V and IoT are intimately related because they both will be composed of the very same technological blocks. The overlap is easy to see.  The foundational components of each are miniaturized MCUs, sensors, wireless technology, and security devices that operate using ultra low power. Describing IoT and V2V as equations, they could be expressed in the following way:              

 IoT = (MCU + Sensor + Security + Wireless) Low Power              

V2V = IoT + Car

Equation one might imply that companies that can integrate the factors will lead in the build-out of the IoT market. Equation two effectively states that V2V is the IoT on wheels. In any case, there are certain basic blocks that must be integrated, and they must be integrated in the right way for the particular use-case. IoT and V2V design flexibility and time to market will matter, a lot.  (But that is a topic for another time.) The growth of the connected car platform is expected to be remarkable. That makes sense since the car is the one place that GPS/NAV systems, smart phones, tablets, DVDs, CDs, MP3s, Bluetooth, satellite radio, high power stereo amps, speakers, voice control, and the Internet can all come together and interact with each other.

Such convergence is making the car into an advanced personal hub. Market researchers have estimated that revenue for the connected car market will grow from $17 billion in 2012 to $54.5 billion in 2018 for hardware and services (telematics, telecom, and in-vehicle). Unit sales of embedded, tethered, and smartphone equipped cars are expected to grow from around 10 million units in 2012 to 67 million by 2018, with over 50% of that volume being embedded systems that are controlled by media and sensor control systems.

Media control systems are not only becoming a standard feature in new cars, but according to consumer electronics and auto industry researchers, a chief reason that people are selecting certain cars over others. Electronics are becoming a main forethought rather than a minor afterthought for car buyers. Sophisticated electronic systems are becoming mandatory, and this powerful dynamic will only accelerate as more electronics products, features, and services are sped to the market by the car makers, consumer electronics companies, smartphone makers, and software providers.

However, all this electronic stuff has presented a huge challenge, which is safety. Using products such as the cell phone in the car actually interferes badly with driving. Anyone who has placed a call, or even worse tried to text while driving (and who hasn’t), can testify to the fact that dial-driving is a bad idea. So, what can be done to get cars electronics, phones, and humans to play well together in a safe way? The solution has been summed up succinctly by the CEO of a major auto maker who refers to in-car control systems as being able to free the user from the tyrannies and dangers of messing with that little phone while you drive. Rather than a car and phone (and other electronics) being at odds with each other, the car is transforming into the newest electronic platform: one that is highly integrated, easy to use, and distinct from anything else to date. It is easy to see that the emerging alloyed car-plus-consumer platform is primed for cars to talk to one another without the need of human intervention.

The list of electronics functions in cars is evolving fast and will likely include multi-person gaming; GPS with location-based services such as real time traffic and road condition updates; vehicle monitoring for maintenance status, performance, and eco-friendliness; vehicle and personal security; connection to home control/security systems; social networking opportunities related to location, and especially safety. In fact, the US Deportment and Transportation (DoT) and National Highway Traffic Safety Administration (NHTSA) are partnering with research institutions and auto companies to collaborate on technology development and interoperability of V2V to promote traffic safety. V2V can transform the automotive experience more than anything since Henry Ford’s assembly line made cars available to the working class. The notion of a car driving itself still sounds like pure science fiction, but prototypes are already driving themselves. So, it is just a question of time before we have auto-automobiles. (auto2mobiles) where you simply have to tell your personal digital assistant where you want to go, then take a seat in your personal infotainment pod until you get there.

car-to-x_daimler

But, well before that happens we will see significant improvements in safety due to V2V. It is clear that the lucrative auto electronics platform is already right in the sights of all car makers, and they clearly plan to take it to the next level and the next level after that, with no end in sight.  As noted, electronic things sell cars, and more advanced electronics will show up in the more advanced cars. Then, last year’s advanced systems will naturally move down-market, so even more advanced systems will be needed for next year’s up-market cars. This endless cycle of innovation will drive automotive companies to create V2V and self-driving ecosystems sooner rather than later. As we move towards the self-driving omega-point we will see V2V and IoT showing up very early in the journey.

V2V (the IoT on wheels) will make it hard to tell where the car ends and the phone, tablet, computer, and sensors begin.

Interested in learning more about Atmel’s automotive portfolio? Check out our automotive-qualified category breakdown below:

You can’t spell “cryptography” without a “why”

When considering adding cryptography to an embedded system (or any other information system) manufacturers always ask: “Why do I need cryptography?” That is, unless they have already been burned by a security breach. The answer is quite simple: “Because you have a lot to lose and the dangers are multiplying every day.”

Perhaps some of the closest analogies are driving without auto insurance, owning a house without fire and casualty insurance, living without health insurance…well, you get the picture. The point is, intentionally leaving an embedded system exposed to hacking, malware and cloning to save cost is simply not prudent from a financial perspective. Of course, safety, liability and brand equity also matter – a lot.

Cutting to the chase, dangerous exposure is directly linked to how exposed the cryptography key is to being accessed by unintended parties such as hackers and cyber-criminals. This has to do with how the key is stored. However, before we explore this topic, let’s look at the bigger picture.

The answer to “why” for product manufacturers? They need to protect their development investment, brand image and revenue in an increasingly hostile cyber-world replete with bad actors. As we noted in a previous article, the number of active Internet threat groups being tracked has risen to over 300, which is more than 400% higher than in 2011.  Nation-states have become hyper-active in cyber-espionage and cyber-attacks. This is because it is now possible to literally upload damage to a target, which is kind of a science fiction scenario come true.

In the same vein, secret information is easily downloaded. More than 95% of networks have become compromised in some way, and directed attacks will only get worse as mobile platforms continue to expand worldwide.

Vulnerable systems placed on the Internet are currently being compromised in less than 15 minutes. Frankly, these statistics aren’t really a surprise given the wildly disproportionate cost / ”benefit” of cyber meddling, which is devilishly tempting to malicious operators.

mask 2

It is clear from the above statistics that hostilities have already broken out and cryptography is the best available shield—perhaps the only one.

Now that we have looked at the “why” in cryptography, what about the “what?” What is cryptography? Let’s focus on the two pillars of cryptography, which are described below:

      1. Authentication  

  •   Making sure the data source is what it is supposed to be.

      2.  Encryption/decryption

  •   Scrambling and descrambling data so only an intended receiver can see it.

Both encryption and authentication are contingent upon keeping secret keys secret. This is the key point.

However, there are many different encryption algorithms, types of authentication schemes, architectures and applications. There is also the choice of how to store the encryption keys. The last point – key storage – is probably the most significant consideration manufacturers can make regarding security.

In essence, cryptographic security is a function of three critical factors:

  1. The length of the key used by the cryptographic algorithms,
  2. The mathematical operations of the cryptographic algorithms, and
  3. How securely the keys are stored (i.e. how vulnerable the keys are to attack).

three elements 1

Since the strength of security depends upon the key size and the specific mathematical properties of the algorithms, various combinations of key sizes and algorithms can potentially be stronger or weaker than any other combination. Meaning, manufacturers have to select one and the other according to their requirements. However, if the keys are not securely stored, well, then none of it matters all that much.

If the keys are not kept secret, then the information can be obtained by unintended outside parties, which defeats the entire purpose. Right? As such, the memory where the key is stored must be able to withstand attacks that try to read the key(s). Such attacks are always underway somewhere, which is a sad but true fact. Fortunately, hardware security devices, like Atmel CryptoAuthentication products, offer a proven method of protecting secret keys that not only restricts access, but also provides key generation and management.

Similarly, storing keys in general purpose (i.e. unsecured) memory in any system leaves the keys open to theft or authorized use via multiple paths. By definition, any system’s software must have access to memory, so any type of bug in the software can inadvertently reveal the key. Just look at the Heartbleed bug as an example. Specialty hardware devices, like CryptoAutentication products are designed for the express purpose of securely storing hardware keys. They do this by utilizing special defense mechanisms that only hardware can provide to repel attacks of various types.

As we’ve previously discussed on Bits & Pieces, secure storage in hardware beats general purpose storage every time. So, the “why” and “what” of cryptography boils down to this: Adding secure key storage is an inexpensive, easy, and ultra-secure way to protect firmware, software and hardware products from cloning, counterfeiting, hacking and other malicious threats.

The key to security is protecting the key. Plus, hard protection beats soft protection. It is that simple. This is precisely why Atmel’s ATSHA204AATECC108A and ATAES132 are all designed for secure authentication by providing a hardware-based storage location with a range of proven physical defense mechanisms, as well as secure cryptographic algorithms and processes. They represent over three generation of hardware security know-how, and experience matters when dealing with real world attacks.

Future Bits & Pieces posts will examine authentication schemes such as asymmetric and symmetric, and how Atmel key storage devices operate in the real world.