Tag Archives: ARM processor

Intelligent MCUs for Low Power Designs

By Florence Chao, Senior Field Marketing Manager, MCU Business Development

Industrial and consumer devices using ARM® Cortex®-M4

Industrial and consumer devices using ARM® Cortex®-M4

Blood glucose meters, sport watches, game controllers and accessories, guess what they all have in common. Yes, like a lot of other industrial and consumer devices, they run on batteries and demand long or extended battery life. As an engineer, this translates into a key challenge when designing an embedded computing system. You need a central heart—in this case a microcontroller—that consumes as little power as possible in both active and static modes yet doesn’t sacrifice performance.  The Atmel® SAM4L ARM® Cortex®-M4 based series is designed with this in mind.

The SAM4L microcontroller redefines low power, delivering the lowest power consumption in its class in active mode (90uZ/MHz) as well as in static mode with full RAM retention running. It also delivers the shortest wake-up time (1.5us). At the same time, this is the most efficient microcontroller available today, achieving up to 28 CoreMark/mA.

The SAM4L series integrates Atmel’s proprietary picoPower® technology

The SAM4L series integrates Atmel’s proprietary picoPower® technology

The SAM4L series integrates Atmel’s proprietary picoPower® technology, which ensures the devices are developed from the ground up—from transistor design to clocking options—to consume as little power as possible. In addition, Atmel Sleepwalking technology allows the peripherals to make intelligent decisions and wake up the system upon qualifying events at the peripheral level.

In this video, you will see how the SAM4L microcontroller supports multiple power configurations to allow the engineer to optimize its power consumption in different use cases. You will also see another good feature of the SAM4L series, Power Scaling, which is a technique to adjust the internal regulator output voltage to further reduce power consumption provided by the integrated Backup Power Manager Module. In addition, the SAM4L series comes with two regulator options to supply system power based on the application requirement. While the buck/switching regulator delivers much higher efficiency and is operational from 2 to 3.6V. The linear regulator has higher noise immunity and operates from 1.68 to 3.6V.

The Atmel® SAM4L ARM® Cortex®-M4 based Microcontroller

The Atmel® SAM4L ARM® Cortex®-M4 based Microcontroller

It’s all about system intelligence and conserving energy. Simply put, the SAM4L microcontroller is your choice if you are designing a product that requires long battery life but you don’t want to sacrifice performance.  To get started, learn more about Atmel SAM4L Xplained Pro Evaluation and Starter Kits.

New ARM Cortex-M4 Flash MCU: Advanced Connectivity, Floating Point Unit

Industrial applications–from home and building control to machine-to-machine (M2M) communications to energy management–call for underlying technology with abundant connectivity peripherals, processing power and analog capabilities. Atmel’s newest ARM Cortex-M4 processor-based Flash microcontroller, the SAM4E, delivers on all of these fronts.

  • 10/100Mbps Ethernet MAC supporting IEEE 1588, full-speed USB 2.0 device and dual CAN
  • More processing power with a maximum operating frequency of 120MHz
  • Floating point unit
  • Two independent 16-bit ADCs with dual sample and hold, offset and gain error correction, programmable gain amplifier

As with Atmel’s other ARM Cortex-M as well as AVR microcontrollers, the SAM4E devices are supported by the Atmel Studio 6 integrated development platform. A free download, Atmel Studio 6 comes with more than 1,600 project examples that minimize much of the low-level coding for designs. With its integrated Atmel Gallery apps store, you can access a variety of Atmel and third-party embedded software, tools and extensions to support your design process.

Learn how SAM4E microcontrollers can support your next design.

Tickle Me….Arduino?

By Stuart Cording

Sorry to disappoint, but no, this isn’t Elmo’s cousin from the Italian version of Sesame Street. If you’re an engineer, it’s something much, much better. A new shield design offering proximity and five touch buttons for the increasingly popular range of Arduino boards. If, after that explanation, you’re none the wiser, read on!

Arduino boards are a range of popular, open-source hardware and software development boards based on Atmel’s range of AVR and, most recently, ARM processor-based SAM3X microcontrollers. The focus of Arduino’s efforts is to make the lives of artists and hobbyists easier by simplifying both the programming of microcontrollers and development of the hardware surrounding them. For professional engineers, Arduino provides an ideal platform for rapid prototyping, test systems and concept design.

The TickleShield, based on Arduino, aims to simplify the use of capacitive touch.

The TickleShield, based on Arduino, aims to simplify the use of capacitive touch.

The functionality of the Arduino boards can be expanded by daughter cards that stack on top, known as “shields”. In order to further simplify the use of capacitive touch, and bring it to Arduino users, I recently started the “TickleShield” project (see picture). As is the way in the wild-wild-west of open source, the project hops along in fits and starts, gaining more and more traction as the concept is shared and feedback on the idea is received.

Of course, there is no better way to rapidly share and gather feedback than via Atmel’s new Spaces cloud-based collaboration workspace where the project, incidentally, is hosted. Why not drop by and participate? Perhaps you have some great ideas on how this shield, or potentially other future touch shields, should function?