Tag Archives: ARM Microprocessor

The smart router is ready for IoT play

The evolution of router has reached the IoT’s doorsteps, and it raises some interesting prospects for industrial and smart home markets.

The router used to be largely a dumb device. Not anymore in the Internet of Things arena where node intelligence is imperative to make a play of the sheer amount of data acquired from sensors, machines and other ‘things.’ The IoT router marks a new era of network intelligence — but what makes a router smart?


For starters, it employs embedded hardware platforms with DIY capabilities while balancing the performance and power consumption requirements. Next, an IoT router provides the operational status on an LCD screen while manipulating the data from different interfaces. In human machine interface (HMI) applications, for example, a smart router offers LCD and touch screen interfaces on expansion I/Os.

Take the case of the DAB-OWRT-53 smart router, which is developed by the Belgian design house DAB-Embedded. The sub-100 euro device — based on Atmel’s SAMA5D36 processor and OpenWRT router hardware platform — is mainly targeted at smart home and industrial IoT applications.

The smart router of DAB-Embedded

The IoT router supports popular wireless interfaces such as Wi-Fi, ZigBee and Z-Wave, as well as a diverse number of wired interfaces including Ethernet, USB, CAN 2.0A/B, KNX and RS-232. And all the data from these interfaces can be stored in either microSD card or NAND flash.

Anatomy of Smart Router

The Atmel | SMART SAMA5D36 is at the heart of the smart router design. First and foremost, it optimizes power consumption in the battery-operated router that features 3.7V lithium polymer battery support with charging capability over a microUSB connector. The router boasts eight hours of battery lifetime while being in full ON mode with Wi-Fi communications.

Second, the ARM Cortex-A5 processor shows a robust performance in the communications domain. For instance, the SAMA5D36 implements routing functionality to transfer data from one Ethernet port to another in a way that router designers don’t require an external hardware hub or switch. Moreover, Atmel’s MPU offers greater flexibility to run a lot of embedded software packages such as OpenZWave and LinuxMCE.

Third, the SAMA5D36-based IoT router offers users the ability to manipulate firewall settings, Disable PING, Telnet, SSH and UPnP features. Furthermore, the hardware security block in SAMA5D3 processor allows the use of CryptoDev Linux drivers to speed up the OpenSSL implementation. The Wi-Fi module — powered by Atmel’s WILC3000 single-chip solution — also supports the IEEE 802.11 WEP, WPA and WPA2 security mechanisms.

The smart router of DAB-Embedded employs Active-Semi’s ACT8945AQJ305-T power management IC, but the real surprise is Altera’s MAX 10 FPGA with an integrated analog-to-digital converter (ADC). That brings the additional flexibility for the main CPU: Atmel’s SAMA5D36.

The FPGA is connected to the 16-bit external bus interface (EBI) so that IoT developers can put any IP core in FPGA for communication with external sensors. All data is converted inside the FPGA to a specific format by using NIOS II’s soft CPU in FPGA. Next, the SAMA5D36 processor reads this data by employing DMA channel over the high-speed mezzanine card (HSMC) bus.

An FPGA has enough cells to start even two soft cores for data preprocessing. Case in point: A weather station with 8-channel external ADC managing light sensors, temperature sensors, pressure sensors and more. It’s connected to the FPGA together with PPS signal from GPS for correct time synchronization of each measurement.


OpenWRT Framework

The SAMA5D36 embedded processor enables DAB’s smart router design to customize free OpenWRT Linux firmware according to the specific IoT application needs. The OpenWRT framework facilitates an easy way to set up router-like devices equipped with communications interfaces such as dual-port Ethernet and Wi-Fi connection.

What’s more, by using the OpenWRT framework, an IoT developer can add now his or her own application (C/C++) to exchange data with a KNX or Z-Wave transceiver. OpenWRT even supports the Lua embedded interpreter.

Next, while DAB-Embedded has built its smart router using the embedded Linux with OpenWRT framework, Belgium’s design house also offers a board support package (BSP) based on the Windows Embedded Compact 2013 software. That’s for IoT developers who have invested in Windows applications and want to use them on the new hardware: the DAB-OWRT-53 smart router.

Later, the embedded design firm plans to release smart router hardware based on the Windows 10 IoT software and Atmel’s SAMA5D family of embedded processors. The Belgian developer of IoT products has vowed to release the second version of its router board based on Atmel’s SAMA5D4 embedded processor and WILC3000 chipset that comes integrated with power amplifier, LNA, switch and power management. Atmel’s WILC3000 single-chip solution boasts IEEE 802.11 b/g/n RF/baseband/MAC link controller and Bluetooth 4.0 connection.

Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Profile of an IoT processor for the industrial and consumer markets

 If there’s a single major stumbling block that is hindering the IoT take-off at the larger industrial scale, it’s security.

The intersection of data with intelligent machines is creating new possibilities in industrial automation, and this new frontier is now being increasingly known as the Industrial Internet of Things (IIoT). However, if there is a single major stumbling block that is hindering the IoT take-off at the larger industrial scale, it’s security.

It’s imperative to have reliable data in the industrial automation environment, and here, the additional security layers in the IoT hardware often lead to compromises in performance. Then, there is counterfeiting of products and application software, which is becoming a growing concern in the rapidly expanding IoT market.


Atmel’s answer to security concerns in the IIoT infrastructure: a microprocessor (MPU) that can deliver the security while maintaining the level of performance that Internet-connected systems require. The company’s Cortex A5 chip — the Atmel | SMART SAMA5D4 — securely stores and transfers data, as well as safeguards software assets to prevent cloning of IoT applications.

The SAMA5D4 series of MPUs enables on-the-fly encryption and decryption of software code from the external DRAM. Moreover, it boasts security features such as secure boot, tamper detection pins and safe erasure of security-critical data. The A5D4 processor also incorporates ARM’s system-wide security approach, TrustZone, which is used to secure peripherals such as memory and crypto blocks. TrustZone —comprising of security extensions that can be implemented in a number of ARM cores — is tightly integrated into ARM’s Cortex-A processors. It runs the processor in two different modes: First, a secure environment executes critical security and safety software, and secondly, a normal environment runs the rich OS software applications such as Linux. This lets embedded designers isolate critical software from OS software.

The system approach allows control access to CPU, memories, DMA and peripherals with programmable secure regions. That, in turn, ensures that on-chip parts like CPU and off-chip parts like peripherals are protected from software attacks.


Performance Uplift

The Atmel SMART | SAMA5D4 processor is based on the Cortex-A5, the smallest and simplest of the Cortex-A series cores that support the 32-bit ARMv7 instruction set. It’s targeted at applications requiring high-precision computing and fast signal processing — that includes industrial and consumer applications such as control panels, communication gateways and imaging terminals.

The use cases for SAMA5D4 span from kiosks, vending machines and barcode scanners, to smart grid, communications gateways and control panels for security, home automation, thermostats, etc. Atmel’s MPU features peripherals for connectivity and user interface applications. For instance, it offers a TFT LCD controller for human-machine interface (HMI) and control panel applications and a dual Ethernet MAC for networking and gateway solutions.

Apart from providing high-grade security, SAMA5D4 adds two other crucial features to address the limitations of its predecessor, SAMA5D3 processor. First, it uplifts performance through ARM’s NEON DSP engine and 128kB L2 cache. The NEON DSP with 128-bit single instruction, multiple data (SIMD) architecture accelerates signal processing for more effective handling of multimedia and graphics. Likewise, L2 cache enhances data processing capability for imaging applications.

The second prominent feature of the SAMA5D4 is video playback that boasts 720p resolution hardware video decoder with post-image processing capability. Atmel’s embedded processor offers video playback for H.264, VP8 and MPEG4 formats at 30fps.

A Quick Overview of the SAMA5D4

The SAMA5D4 processor, which got a 14 percent performance boost from its predecessor MPU, increasing operating speed to 528 MHz, is a testament of the changing microprocessor market in the IoT arena. Atmel’s microprocessor for IoT markets delivers 840 DMIPS that can facilitate imaging-centric applications hungry for processing power. Aside from that, the SAMA5D4 is equipped with a 32-bit wide DDR controller running up to 176 MHz, which can deliver up to 1408MB/s of bandwidth. That’s a critical element for high-speed peripherals common in the industrial environments where microprocessors are required to process large amounts of data.


Finally, the SAMA5D4 is configurable in either a 16- or 32-bit bus interface allowing developers a trade-off between performance and memory cost. There are four distinct chips in the SAMA5D4 family: SAMA5D41 (16-bit DDR), SAMA5D42 (32-bit DDR), SAMA5D43 (16-bit DDR along with H.264 video decoder)and SAMA5D44 (32-bit DDR along with H.264 video decoder).

The SoC-specific hardware security and embedded vision capabilities are a stark reminder of specific requirements of different facets of IoT, in this case, industrial and consumers markets. And Atmel’s specific focus on security and rich media just shows how the semiconductor industry is getting around the key IoT stumbling blocks.

Majeed Ahmad is the author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Exploring Atmel’s new microcontrollers, IoT and wearables

More and more companies, regardless of their vertical, are trying to get closer to their customers and see various aspects of the internet of things (IoT) as the way to do so. For a good example, here is Salesforce Wear Developer Pack which, as they say:

..is a collection of open-source starter apps that let you quickly design and build wearable apps that connect to the Salesforce1 Platform. Millions of wearable devices connected to the cloud will create amazing new application opportunities.

Since Salesforce.com cuts across all industries this has potential impact in many different market segments.

And, the wearable devices that they list are Google Glass, Android Wear, Samsung Gear Watch, Myo Armband, Nymi Bionym, Pebble Watch, Jawbone UP, Epson Moverio, Vuzix Smart Glasses, Oculus Rift, Meta Glasses.

This combination brings home that the internet of things isn’t just about the things, it is about connecting the things back to the cloud so that the data generated can be aggregated where it has much greater value.

I am sure that people will design SoCs for various aspects of IoT, but even if they do I think it will be in old processes, not even 28nm, so they can integrate sensors and analog and wireless on the same chip. But more likely a lot of these will be small boards with microcontrollers, wireless and sensors on different chips. For example, take a look at the iFixit teardown of the Fitbit, which in its current incarnation is about one inch by quarter of an inch.


An important aspect of doing this sort of design is having enough microcontrollers with the right combination of features. You can’t afford to have twice as much flash as you need or too many unused functions. The Atmel microcontroller product finder shows that at present they have 506 different ones to choose from.

The most recent two are SAMA5D4, and SAMD21 which are specifically targeted towards wearables and IoT projects. These are the latest two products in the Atmel SAM D family.

One area of especial concern in this market is security since it is too dangerous to simply try and do everything in software on the microcontroller. Keys can be stolen. Software can be compromised if it is in external RAM. An area of particular security concern is to make sure that any JTAG debug port is secure or it can be used to compromise almost anything on the chip.

So what are these chips?

The SAMA5D4 is an ARM Cortex-A5 device with a 720p hardware video decoder. It has high security with on-the-fly capability to run encrypted code straight out of external memory, tamper detection, secret key storage in hardware, hardware private and public key cryptography and ARM TrustZone. It supports both 16 and 32 bit memory interfaces for maximum flexibility. It is targeted at applications that require displays, such as home and industrial automation, vending machines, elevator displays with ads, or surveillance camera playback.

The SAMD21 is the latest Atmel microcontroller based on the ARM Cortex-M0+ but in addition to the features on earlier cores it also has:

  • Full speed USB device and embedded host
  • DMA
  • Enhanced timer/counters for high end PWM in Lighting and motor control – I2S
  • Increased I2C speed to 3.4Mbit/S
  • Fractional PLL for audio streaming

As you can deduce from the feature set it is target at medium end industrial and consumer applications, possibly involving audio and high power management.

And, to show that this sort of market is starting to become real, at the salesforce Dreamforce event earlier in the week a keynote was given by will.i.am of the Black Eyed Peas (and a founder of Beats that Apple recently acquired). In a chat with Marc Benoiff, CEO of Salesforce.com, he has already leaked that he will introduced a wearable wrist computer that doesn’t require a phone to piggy-back on (unlike the Apple Watch).

Watch the chat:

Looking for more information on the SAMA5D4It can be found here.

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on October 17, 2014.

Myo makes Minority Report a reality

Developed by Thalmic Labs, the Myo armband is bringing Minority Report-like technology a step closer to reality. For those who haven’t seen the flick, it’s also quite reminiscent of Iron Man Tony Stark’s gesture-controlled holo-computer. Regardless, the one-size-fits-all wearable is well on its way to revolutionizing the way we interact with our digital world.


Using electromyographic (EMG) sensors to recognize electrical signals pulsating through your forearm muscles, Myo can detect detailed data about your arm’s muscle activity. This enables the wearable device to identify whether the wearer’s gestures, whether they’re clenching, flicking, waving their wrist. “We’re building the future of human-computer interaction and we’re excited about how new computer interfaces will shape our lives,” a company rep recently told The Huffington Post.


The next-gen wearable features onboard, rechargeable Lithium-Ion batteries, as well as an ARM processor, proprietary muscle activity sensors and a 9-axis inertial measurement unit. Based on an ARM Cortex-M4 processor, Myo connects via Bluetooth-enabled devices to provide gesture recognition in an endless possibility of uses, ranging from healthcare to wireless computing and gaming. As our friends at ARM point out, Myo can control music playback by swiping your hand to change a song, spreading your fingers can stop a song, while volume can be increased and decreased by the rotating a fist to the left and right. Not to mention, “the gadget enables presentations to become easier as slideshows can be controlled by flicking through slides while engagement is gained as presenters are able to zoom in and annotate to draw the audience’s attention to key points.”


Gamers, rejoice! In addition to a number of other applications, wearers will soon be able to immerse themselves within video games as movements such as running, crouching, jumping are all mimicked on the screen. The armband is supposed to work with Windows, Mac, iOS or Android devices. Myo is currently available for pre-order for $149 and is expected to begin shipping this September (after the Myo Developer Kits have been issued).

A number of developers have already had a chance to experiment with the Myo in order to find new ways to make use of it. “It’s been kind of overwhelming the number of different ideas we’ve heard and the things people have already built,” Aaron Grant, one of the co-founders, told CBC News.