Tag Archives: ARM Cortex-A7

Chip Design Mag goes 1:1 with Jacko Wilbrink

ARM recently announced that it had licensed processor and security IP to Atmel for use in devices requiring image, video and display capabilities. The license includes the ARM Cortex®-A7 processorARM Mali™-V500 video accelerator, Mali-DP500 display processor and ARM TrustZone® technology, which can now be integrated into a variety of wearable devices, toys and even automated factory tasks reliant on image processing.

The energy efficiency and small die area of the ARM Mali-V500 and Mali-DP500 enables full HD 1080p60 resolution capabilities on a single core, reducing the cost for price-sensitive consumer applications. They also both incorporate ARM TrustZone technology for hardware-backed content security from download to display, which is becoming more important as more mobile devices are used for such content downloads.

Following the announcement, Chip Design Mag‘s Caroline Hayes had a chance to sit down with Jacko Wilbrink, Atmel Senior Product Marketing Director, to discuss what the adoption of ARM Mali means for both parties. The interview can be found below.

CH: What existing strengthens will Atmel bring in using the Mali IP?
JW: Low power will remain an important differentiator for Atmel MPUs including those embedding Mali IPs going forward. The Mali IPs will bring smartphone and tablet experience and applications to many products including power sensitive user interface centric wearable and battery operated products.

CH: What markets will the licensed IP address, e.g. wearables?
JW: With the cost of TFT displays coming down and the demand from consumers to improve the user interface/user experience of a fast growing range of products beyond smartphones and tablets, there is a growing need for MPUs with graphical processing and video capabilities. Industrial graded products with long life support, professional documentation and support are important benefits Atmel offers over alternative multi-core ASSPs designed for smartphones and tablets.

CH: What architectural features of Mali will be used in these areas?
JW: The licensed IPs allow Atmel to scale up their MPUs in performance and functionality including 3D graphics, HD video decoding and encoding and efficient memory bandwidth usage. The multi-core Cortex-A cores offer the ability to optimize the price performance point while maximizing software reuse across an Atmel MPU platform.

CH: What benefits of the Mali architecture will be exploited initially and how?
JW: Full compliance with video and graphics standards is critical for our customers. Power efficiency, Android support and efficient memory usage and bus bandwidth optimization are important benefits offered by the Mali IPs.

CH: When will the first Mali-based devices be rolled out?
JW: The first design is planned to sample to early customers by the end of 2015.

To learn more about the collaboration, you can find the original announcement here.

Atmel and ARM Mali team up to power next-gen devices

ARM announced today that it has licensed processor and security IP to Atmel for use in devices requiring image, video and display capabilities. The license includes the ARM Cortex®-A7 processorARM Mali™-V500 video accelerator, Mali-DP500 display processor and ARM TrustZone® technology, which can now be integrated into a variety of wearable devices, toys and even automated factory tasks reliant on image processing.

arm-mali-octocore

Each ARM Mali GPU, video and display processor delivers high-performance in the smallest area. This will enable any screen-based device to offer a similar multimedia experience to the latest tablet or smartphone with a smooth 3D user interface, video capture and playback functionality, all at HD resolution while incorporating secure features for protection of data and content. The best part? It’s all in a low power budget.

“Atmel and ARM have a successful history of collaboration,” explained Pete Hutton, ARM Executive Vice President and President of Product Groups. “That partnership continues to build with Atmel now expanding its ARM IP portfolio to include even stronger security and richer media processing technology that prepares the way for new and exciting products in emerging markets such as IoT, wearables and factory automation.”

The incredibly popular ARM Mali™ Multimedia IP has been successful throughout the mobile space, currently ranked atop the list for shipping GPU for Android devices. “The interesting thing for me about the Atmel license announced today is not just that they now have access to ARM Cortex®-A7, ARM’s most energy efficient processor ever, and ARM’s video and display processors – it is the new and different types of markets Atmel will go on and address with the same ARM Mali IP which has done so well in the mobile market,” ARM’s Chris Porthouse noted in the company’s blog.

Cortex-A7-chip-diagram-LG

The energy efficiency and small die area advantages of ARM Mali-V500 and Mali-DP500 enables full HD 1080p60 resolution capabilities on a single core, which is ideally suited for cost-conscious applications. Additionally, both the ARM Mali-V500 and Mali-DP500 incorporate support for ARM TrustZone technology for hardware-backed content security from download to display.

Mali-V500(1)

“As IoT and wearable devices become smaller, more sophisticated and integrated, the SoCs used in the devices will need to offer more features and functionality in smaller packages,” said Reza Kazerounian, Senior VP and GM of the Microcontroller Business Unit at Atmel. “The small area footprint of the ARM Cortex and Mali multimedia solutions will allow us to offer HD video and display processing in unprecedented sizes.”

Mali-DP500(2)

With Mali-DP500, Atmel SoCs will now have the capability to deliver UI functionality such as multi-layer composition, scaling and post-processing with support from ARM’s Frame Buffer Compression (AFBC) protocol. This technology is unique to ARM and is capable of delivering a 60% reduction in system bandwidth for video playback.

 

 

ATmega328P + ARM Cortex-A7 = Akarel

Akarel – which recently surfaced on Indiegogo – is a hardware development kilt that integrates Atmel’s ATmega328P microcontroller (MCU) and a 1GHz Allwinner A20 dual-core ARM Cortex-A7 processor (CPU) on a single board with a touch screen.

As Akarel creator Karel Kyovsky notes, the platform is targeted at devs and Makers who require a touch screen interface to implement their respective projects.

The development platform is currently available in two iterations: Akarel 7 (7-inch display) and Akarel22 (22-inch display). The former features an industrial grade projected capacitive multi touch connected via I2C, while the latter is equipped with a USB-linked capacitive single touch.

“Some development kits are missing displays or touch, [while] others use obscure software stacks. Imagine implementing your hack ideas within hours instead of days like you’ve been doing until now,” Kyovsky explained.

“Akarel integrates Android OS running on [the] ARM Cortex A7 via UART, with Arduino software running on [Atmel’s] ATmega328P MCU. Integration and connection of both chips on [a single] PCB [offers a number of] advantages.”

According to Kyovsky, these include:

  • 

Graphics and UI capabilities of Google’s flagship Android OS
  • Optimized environment for application development
  • Seamless network connectivity via WiFi or Ethernet
  • Access to extensive Arduino community libraries

Kyovsky says he envisions Akarel being used to develop smart home automation and security systems, kiosks/payment terminals, along with Internet of Things (IoT) devices and appliances.

On the software side, the Akarel kit offers Makers and developers access to a Git repository stocked with Uboot source code, Linux kernel source (3.4.39), fine-tuned Android OS sources (4.2.2), Arduino firmware sources, Arduino tools (i.e. avrdude) and example apps.

“We want you to concentrate on writing an application not on spending time to make the basic things work. We have done it for you already. And if you want to dive deeper and modify the Linux kernel or Android OS…Why not? You have all the sources available for you to change and compile,” Kyovsky added.

“In order to save you from the hell of installing all the toolchain (correct version of gcc, libs, headers, automake, make, java, you name it) we have also prepared a Ubuntu virtual machine for you which may be downloaded and which has [the entire] toolchain preinstalled so that you can start recompiling your complete stack within a few minutes.”

Interested in learning more about the Akarel? You can check out the project’s official Indiegogo page here.