Tag Archives: 802.11b/g/n Wi-Fi Modules

Atmel wireless connectivity supports industrial IoT revolution


The BTLC1000 exhibits the lowest BLE power consumption in the industry.


With both this year’s CES and Embedded World now behind us, it’ll be interesting to see which of the gadgets unveiled during these shows find a way to market — some will go to production, others won’t. I am skeptic about the smart shoe offering self-fastening mechanism… And during these two weeks, the IoT revolution has silently progressed in industrial automation. (You will be surprised if you read some very serious white papers extracted from the Internet of Things series published by Bosch.)

ble1000_google-banner.jpg

While attendees flocked to Vegas, progresses were made in industrial automation thanks to hard work being done in Germany. In fact, these two worlds — consumer oriented and industrial — are both relying on wireless connectivity, including products from Atmel: the ATWILC1000, ATWILC1500 or ATWILC3000 supporting Wi-Fi and ATBLC1000 supporting BTLE 4.1,which  was recently crowned “Product of the Year” from Electronic Products.

According to Bosch’s white paper “Leveraging the Internet of Things: Companies can streamline business processes for stakeholders across the extended enterprise,” we realize that Bosch’s managers have brainstormed about the IoT to extract the added business value for the enterprise, like for example, “in manufacturing, data automatically collected from smart and connected products, give companies meaningful feedback as to how products should be reengineered, and provides opportunities for additional revenue through selling services.”

In order to become smart and connected, industrial products need to integrate either a Wi-Fi connection supported by ATWINC1500, or a Bluetooth supported by the very tiny (see above) ATBTLC1000.

IoT-scalability-courtesy-Bosch

Shows the requirements for scalability on two current customer PoCs at Bosch Software Innovations. These PoCs start in year one with a very low umber of connected devices and sensors. However, in a short space of time, they scale massively upward for commercial launch and rollout.

From the above graphic, extracted from another white paper from Bosch, “Realizing the connected world-how to choose the right IoT platform,” we can derive two crucial information. The first is the fact that IoT is already a reality in the industrial market segment, not really known to be fashion driven like could be consumer electronic. The second information is about scalability. In both examples, the number of connected devices was very low, but in a short space of time they scale massively, reaching 500k devices for the first and up to 3 million for the other. A single industrial automation application can generate a very good semiconductor business, including sensors, MCU and wireless connectivity device. In our previous blog, we have investigated the ATWINCxx00 family bringing Wi-Fi connectivity to any embedded design. Let’s take a look at the award winner ATBTLC1000 device supporting BT 4.1 connectivity.

Atmel's BTLC1000

The BTLC1000 is an ultra-low power Bluetooth SMART (BLE 4.1) SoC with an integrated ARM Cortex-M0 MCU, a transceiver, a modem, MAC, PA, TR Switch, and a power management unit (PMU). It can be used as a BLE link controller or data pump with external host MCU, or as a standalone applications processor with embedded BLE connectivity and external memory. If we look at the key features list:

  • BLE4.1 compliant SoC and protocol stack
  • Lowest BLE power consumption in industry
  • Smallest BLE 4.1 SoC — Available in WLCSP (2.26×2.14mm) or QFN ( 32p 4×4 mm)
  • Optimized system cost — High level of integration on chip reduces external Bill of Material significantly
  • Wide operating Voltage range — 1.8 – 4.3V
  • Host Interface — SPI or UART
  • Certified modules — FCC, ETSI/CE, TELEC
  • Enterprise Development support & tools with the ATBTLC1000 Xplained Pro

The main reasons why the Atmel BTLC1000 has won the Electronic Design award are power, cost and certification. This chip not only exhibits the lowest BLE power consumption in the industry, it’s also the smallest BLE 4.1 SoC (see picture) offering optimized system cost, thanks to high level of integration. If companies like Bosch supporting industrial automation segment for years (if not centuries) start to be seriously involved into smart connected IoT systems, no doubt that ATBTLC1000 and ATWILC1000 devices have a bright future…


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger and one of the four founding members of the site. This blog first appeared on SemiWiki on January 10, 2016.

4 reasons why Atmel is ready to ride the IoT wave


The IoT recipe comprises of three key technology components: Sensing, computing and communications.


In 2014, a Goldman Sachs’ report took many people by surprise when it picked Atmel Corporation as the company best positioned to take advantage of the rising Internet of Things (IoT) tsunami. At the same time, the report omitted tech industry giants like Apple and Google from the list of companies that could make a significant impact on the rapidly expanding IoT business. So what makes Atmel so special in the IoT arena?

The San Jose, California–based chipmaker has been proactively building its ‘SMART’ brand of 32-bit ARM-based microcontrollers that boasts an end-to-end design platform for connected devices in the IoT realm. The company with two decades of experience in the MCU business was among the first to license ARM’s low-power processors for IoT chips that target smart home, industrial automation, wearable electronics and more.

Atmel and IoT (Internet of Things)

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market.

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market

A closer look at the IoT ingredients and Atmel’s product portfolio shows why Goldman Sachs called Atmel a leader in the IoT space. For starters, Atmel is among the handful of chipmakers that cover all the bases in IoT hardware value chain: MCUs, sensors and wireless connectivity.

1. A Complete IoT Recipe

The IoT recipe comprises of three key technology components: Sensing, computing and communications. Atmel offers sensor products and is a market leader in MCU-centric sensor fusion solutions than encompass context awareness, embedded vision, biometric recognition, etc.

For computation—handling tasks related to signal processing, bit manipulation, encryption, etc.—the chipmaker from Silicon Valley has been offering a diverse array of ARM-based microcontrollers for connected devices in the IoT space.

Atmel-IoT-Low-Power-wearable

Atmel has reaffirmed its IoT commitment through a number of acquisitions.

Finally, for wireless connectivity, Atmel has cobbled a broad portfolio made up of low-power Wi-Fi, Bluetooth and Zigbee radio technologies. Atmel’s $140 million acquisition of Newport Media in 2014 was a bid to accelerate the development of low-power Wi-Fi and Bluetooth chips for IoT applications. Moreover, Atmel could use Newport’s product expertise in Wi-Fi communications for TV tuners to make TV an integral part of the smart home solutions.

Furthermore, communications across the Internet depends on the TCP/IP stack, which is a 32-bit protocol for transmitting packets on the Internet. Atmel’s microcontrollers are based on 32-bit ARM cores and are well suited for TCP/IP-centric Internet communications fabric.

2. Low Power Leadership

In February 2014, Atmel announced the entry-level ARM Cortex M0+-based microcontrollers for the IoT market. The SAM D series of low-power MCUs—comprising of D21, D10 and D11 versions—featured Atmel’s signature high-end features like peripheral touch controller, USB interface and SERCOM module. The connected peripherals work flawlessly with Cortex M0+ CPU through the Event System that allows system developers to chain events in software and use an event to trigger a peripheral without CPU involvement.

According to Andreas Eieland, Director of Product Marketing for Atmel’s MCU Business Unit, the IoT design is largely about three things: Battery life, cost and ease-of-use. The SAM D microcontrollers aim to bring the ease-of-use and price-to-performance ratio to the IoT products like smartwatches where energy efficiency is crucial. Atmel’s SAM D family of microcontrollers was steadily building a case for IoT market when the company’s SAM L21 microcontroller rocked the semiconductor industry in March 2015 by claiming the leadership in low-power Cortex-M IoT design.

Atmel’s SAM L21 became the lowest power ARM Cortex-M microcontroller when it topped the EEMBC benchmark measurements. It’s plausible that another MCU maker takes over the EEMBC benchmarks in the coming months. However, according to Atmel’s Eieland, what’s important is the range of power-saving options that an MCU can bring to product developers.

“There are many avenues to go down on the low path, but they are getting complex,” Eieland added. He quoted features like multiple clock domains, event management system and sleepwalking that provide additional levels of configurability for IoT product developers. Such a set of low-power technologies that evolves in successive MCU families can provide product developers with a common platform and a control on their initiatives to lower power consumption.

3. Coping with Digital Insecurity

In the IoT environment, multiple device types communicate with each other over a multitude of wireless interfaces like Wi-Fi and Bluetooth Low Energy. And IoT product developers are largely on their own when it comes to securing the system. The IoT security is a new domain with few standards and IoT product developers heavily rely on the security expertise of chip suppliers.

Atmel offers embedded security solutions for IoT designs.

Atmel, with many years of experience in crypto hardware and Trusted Platform Modules, is among the first to offer specialized security hardware for the IoT market. It has recently shipped a crypto authentication device that has integrated the Elliptic Curve Diffie-Hellman (ECDH) security protocol. Atmel’s ATECC508A chip provides confidentiality, data integrity and authentication in systems with MCUs or MPUs running encryption/decryption algorithms like AES in software.

4. Power of the Platform

The popularity of 8-bit AVR microcontrollers is a testament to the power of the platform; once you learn to work on one MCU, you can work on any of the AVR family microcontrollers. And same goes for Atmel’s Smart family of microcontrollers aimed for the IoT market. While ARM shows a similarity among its processors, Atmel exhibits the same trait in the use of its peripherals.

Low-power SAM L21 builds on features of SAM D MCUs.

A design engineer can conveniently work on Cortex-M3 and Cortex -M0+ processor after having learned the instruction set for Cortex-M4. Likewise, Atmel’s set of peripherals for low-power IoT applications complements the ARM core benefits. Atmel’s standard features like sleep modes, sleepwalking and event system are optimized for ultra-low-power use, and they can extend IoT battery lifetime from years to decades.

Atmel, a semiconductor outfit once focused on memory and standard products, began its transformation toward becoming an MCU company about eight years ago. That’s when it also started to build a broad portfolio of wireless connectivity solutions. In retrospect, those were all the right moves. Fast forward to 2015, Atmel seems ready to ride on the market wave created by the IoT technology juggernaut.

Interested? You may also want to read:

Atmel’s L21 MCU for IoT Tops Low Power Benchmark

Atmel’s New Car MCU Tips Imminent SoC Journey

Atmel’s Sensor Hub Ready to Wear


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Atmel expands SmartConnect portfolio with 802.11b/g/n Wi-Fi SoCs and modules

Atmel has expanded its leading SmartConnect wireless portfolio with four new turnkey system-on-chips (SoCs): the WILC1000 and WINC1500. Each SoC extends the company’s already broad portfolio of wireless connectivity options with the latest 802.11b/g/n Wi-Fi capability, seamlessly integrating Newport Media’s (NMI) solutions in just two months.

Atmel_WINC1500_FB_TC_1200x1200_091714

If you recall, NMI was acquired back in July 2014, thereby enabling Atmel to offer designers and Makers the industry’s most comprehensive wireless portfolio of smart, connected devices for the growing Internet of Things (IoT). The acquisition immediately added 802.11n Wi-Fi and Bluetooth to its existing offerings and has accelerated the company’s introduction of low-energy Bluetooth products, Atmel CEO Steve Laub recently explained. “Combined with our existing Wi-Fi and ZigBee solutions and industry leading microcontroller portfolio, Atmel is positioned for substantial growth in the Internet of Things marketplace.”

Both wireless solutions are compatible with existing Atmel microcontroller solutions and can connect to all Atmel AVR or Atmel | SMART MCUs. The new WINC1500 is an IEEE 802.11b/g/n IoT network controller, while the WILC1000 is an IEEE 802.11b/g/n IoT link controller.

Expanding on Atmel’s Wi-Fi offering, the WILC1000 and WINC1500 are SoC solutions optimized for battery-powered IoT applications. These wireless SoCs feature fully-integrated power amplifiers for the industry’s best communication range, without compromising cost or performance. Both the WILC1000 and WINC1500 are add-on solutions which can connect to any Atmel MCU or eMPU targeting a wide range of Internet of Things (IoT), consumer and industrial applications. Both products are available either as fully-certified modules ready for production to accelerate a designer’s time-to-market or as discrete SoCs for customers requiring the highest design flexibility.

“Atmel is excited to offer one of the broadest portfolios of differentiated wireless MCU solutions in the industry to further enable more smart, connected devices in the era of the Internet of Things,” said Kaivan Karimi, Atmel Vice President of Wireless Solutions. “Connected devices that were once a concept are becoming a reality because of innovations that are allowing devices to be smaller, easier to use, faster and more powerful—but are lower in power and optimized for battery operations. When these products are paired with Atmel’s broad portfolio of products, along with comprehensive technologies, OEMs and small developers are allowed to streamline the production of the next wave of IoT devices.”

Atmel’s SmartConnect family can be connected to any ultra-low power MCUs or eMPUs and wireless connectivity solutions into an easy, turnkey IoT solution. SmartConnect enables Wi-Fi Internet connectivity using ultra-low power for IoT edge/sensing nodes markets, therefore reducing overall bill of materials. In addition, the latest solutions accelerate development time for cost-effective, battery-operated applications in the residential, healthcare, industrial, smart energy and wearable markets.

As Reza Kazerounian, Senior Vice President and General Manager, MCU Business Unit at Atmel, previously noted, ultra-low power wireless connectivity is critical for embedded applications in the era of IoT.  “[That is why] Atmel’s SmartConnect technology is about simplifying the use of embedded wireless connectivity technologies and enabling users to accelerate their time-to-market. This simplicity allows all players to participate in the IoT market, fueling the innovation needed to accelerate adoption.”

The WILC1000 and WINC1500 provide multiple peripheral interfaces such as UART, SPI, SDIO and I2C. The only external clock source needed is a high-speed crystal or oscillator with a wide variety of reference clock frequencies supported (between 12 – 50 MHz) and are IEEE 802.11 b/g/n, RF, Baseband, MAC certified.

Key features of the Atmel WILC1000, which can be found on its preliminary datasheet ready for download, include:

  • IEEE 802.11 b/g/n RF/PH/MAC SoC
  • IEEE 802.11 b/g/n (1×1) for up to 72Mbps
  • Single spatial stream in 2.5Ghz RF band
  • Integrated PA and T/R Switch
  • Superior Sensitivity and Range via advanced PHY signal processing
  • Advanced Equalization and Channel Estimation
  • Advanced Carrier and Timing Synchronization
  • Wi-Fi Direct and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA, WPA2 Security
  • Supports China WAPI security
  • Superior MAC throughput via hardware accelerated two-level A-MSDU/A-MPDU frame aggregation and block acknowledgement
  • On-chip memory management engine to reduce host load
  • SPI and SDIO host interfaces
  • 2/3/4-wire Bluetooth coexistence interface

WILC

Key features of the Atmel WINC1500, whose preliminary datasheet can also be found here, include:

  • IEEE 802.11 b/g/n RF/PH/MAC SOC
  • IEEE 802.11 b/g/n (1×1) for up to 72Mbps
  • Single spatial stream in 2.5Ghz RF band
  • Integrated PA and T/R Switch
  • Superior Sensitivity and Range via advanced PHY signal processing  Wi-Fi Direct and Soft-AP support
  • Supports IEEE 802.11 WEP, WPA, WPA2 Security
  • On-chip memory management engine to reduce host load
  • 4Mbit internal Flash memory for system software
  • SPI, UART and I2C as host interfaces
  • Power save modes
    • 3μA deep sleep mode
    • 600μA standby mode (state is preserved)
    • On-chip low power sleep oscillator
    • Fast host wake-up by chip pin or clock-less transaction
  • Fast boot options
    • On-Chip Boot ROM (Firmware instant boot)
    • SPI flash boot (firmware patches and state variables)
    • Low-leakage on-chip memory for state variables (next chip revision)
    • No SPI flash is needed if firmware patches and state variables can be loaded from MCU at boot time
    • Fast AP Re-Association (150ms)
  • On-Chip Network Stack to offload MCU
    • Integrated Network IP stack to minimize host CPU requirements
    • Network features TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS
  • TCP/IP protocol stack (client/server) sockets applications
  • Wi-Fi security WEP, WPA, WPA2 and WPS
  • Advanced Equalization and Channel Estimation
  • Advanced Carrier and Timing Synchronization
  • Wi-Fi Direct and Soft-AP support
  • Network protocols (DHCP/DNS)
  • WSC (wireless simple configuration WPS)
  • No OS small footprint host driver (4KB flash – less than 1KB RAM)

WINC

Interested in the newest members of the SmartConnect family? The WILC1000 and WINC1500 are both now available — WILC1000 as a chip and three different modules; the WINC1500 as a chip and a module, with an evaluation kit featuring Atmel’s SAM D21 MCU.