Tag Archives: 8-bit and 32-bit AVR and ARM microcontroller

4 reasons why Atmel is ready to ride the IoT wave


The IoT recipe comprises of three key technology components: Sensing, computing and communications.


In 2014, a Goldman Sachs’ report took many people by surprise when it picked Atmel Corporation as the company best positioned to take advantage of the rising Internet of Things (IoT) tsunami. At the same time, the report omitted tech industry giants like Apple and Google from the list of companies that could make a significant impact on the rapidly expanding IoT business. So what makes Atmel so special in the IoT arena?

The San Jose, California–based chipmaker has been proactively building its ‘SMART’ brand of 32-bit ARM-based microcontrollers that boasts an end-to-end design platform for connected devices in the IoT realm. The company with two decades of experience in the MCU business was among the first to license ARM’s low-power processors for IoT chips that target smart home, industrial automation, wearable electronics and more.

Atmel and IoT (Internet of Things)

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market.

Goldman Sachs named Atmel a leader in the Internet of Things (IoT) market

A closer look at the IoT ingredients and Atmel’s product portfolio shows why Goldman Sachs called Atmel a leader in the IoT space. For starters, Atmel is among the handful of chipmakers that cover all the bases in IoT hardware value chain: MCUs, sensors and wireless connectivity.

1. A Complete IoT Recipe

The IoT recipe comprises of three key technology components: Sensing, computing and communications. Atmel offers sensor products and is a market leader in MCU-centric sensor fusion solutions than encompass context awareness, embedded vision, biometric recognition, etc.

For computation—handling tasks related to signal processing, bit manipulation, encryption, etc.—the chipmaker from Silicon Valley has been offering a diverse array of ARM-based microcontrollers for connected devices in the IoT space.

Atmel-IoT-Low-Power-wearable

Atmel has reaffirmed its IoT commitment through a number of acquisitions.

Finally, for wireless connectivity, Atmel has cobbled a broad portfolio made up of low-power Wi-Fi, Bluetooth and Zigbee radio technologies. Atmel’s $140 million acquisition of Newport Media in 2014 was a bid to accelerate the development of low-power Wi-Fi and Bluetooth chips for IoT applications. Moreover, Atmel could use Newport’s product expertise in Wi-Fi communications for TV tuners to make TV an integral part of the smart home solutions.

Furthermore, communications across the Internet depends on the TCP/IP stack, which is a 32-bit protocol for transmitting packets on the Internet. Atmel’s microcontrollers are based on 32-bit ARM cores and are well suited for TCP/IP-centric Internet communications fabric.

2. Low Power Leadership

In February 2014, Atmel announced the entry-level ARM Cortex M0+-based microcontrollers for the IoT market. The SAM D series of low-power MCUs—comprising of D21, D10 and D11 versions—featured Atmel’s signature high-end features like peripheral touch controller, USB interface and SERCOM module. The connected peripherals work flawlessly with Cortex M0+ CPU through the Event System that allows system developers to chain events in software and use an event to trigger a peripheral without CPU involvement.

According to Andreas Eieland, Director of Product Marketing for Atmel’s MCU Business Unit, the IoT design is largely about three things: Battery life, cost and ease-of-use. The SAM D microcontrollers aim to bring the ease-of-use and price-to-performance ratio to the IoT products like smartwatches where energy efficiency is crucial. Atmel’s SAM D family of microcontrollers was steadily building a case for IoT market when the company’s SAM L21 microcontroller rocked the semiconductor industry in March 2015 by claiming the leadership in low-power Cortex-M IoT design.

Atmel’s SAM L21 became the lowest power ARM Cortex-M microcontroller when it topped the EEMBC benchmark measurements. It’s plausible that another MCU maker takes over the EEMBC benchmarks in the coming months. However, according to Atmel’s Eieland, what’s important is the range of power-saving options that an MCU can bring to product developers.

“There are many avenues to go down on the low path, but they are getting complex,” Eieland added. He quoted features like multiple clock domains, event management system and sleepwalking that provide additional levels of configurability for IoT product developers. Such a set of low-power technologies that evolves in successive MCU families can provide product developers with a common platform and a control on their initiatives to lower power consumption.

3. Coping with Digital Insecurity

In the IoT environment, multiple device types communicate with each other over a multitude of wireless interfaces like Wi-Fi and Bluetooth Low Energy. And IoT product developers are largely on their own when it comes to securing the system. The IoT security is a new domain with few standards and IoT product developers heavily rely on the security expertise of chip suppliers.

Atmel offers embedded security solutions for IoT designs.

Atmel, with many years of experience in crypto hardware and Trusted Platform Modules, is among the first to offer specialized security hardware for the IoT market. It has recently shipped a crypto authentication device that has integrated the Elliptic Curve Diffie-Hellman (ECDH) security protocol. Atmel’s ATECC508A chip provides confidentiality, data integrity and authentication in systems with MCUs or MPUs running encryption/decryption algorithms like AES in software.

4. Power of the Platform

The popularity of 8-bit AVR microcontrollers is a testament to the power of the platform; once you learn to work on one MCU, you can work on any of the AVR family microcontrollers. And same goes for Atmel’s Smart family of microcontrollers aimed for the IoT market. While ARM shows a similarity among its processors, Atmel exhibits the same trait in the use of its peripherals.

Low-power SAM L21 builds on features of SAM D MCUs.

A design engineer can conveniently work on Cortex-M3 and Cortex -M0+ processor after having learned the instruction set for Cortex-M4. Likewise, Atmel’s set of peripherals for low-power IoT applications complements the ARM core benefits. Atmel’s standard features like sleep modes, sleepwalking and event system are optimized for ultra-low-power use, and they can extend IoT battery lifetime from years to decades.

Atmel, a semiconductor outfit once focused on memory and standard products, began its transformation toward becoming an MCU company about eight years ago. That’s when it also started to build a broad portfolio of wireless connectivity solutions. In retrospect, those were all the right moves. Fast forward to 2015, Atmel seems ready to ride on the market wave created by the IoT technology juggernaut.

Interested? You may also want to read:

Atmel’s L21 MCU for IoT Tops Low Power Benchmark

Atmel’s New Car MCU Tips Imminent SoC Journey

Atmel’s Sensor Hub Ready to Wear


Majeed Ahmad is author of books Smartphone: Mobile Revolution at the Crossroads of Communications, Computing and Consumer Electronics and The Next Web of 50 Billion Devices: Mobile Internet’s Past, Present and Future.

Arduino in research and biotech


Arduino’s acceptance into the biotech research community is evident from its increasing mentions in high-profile science and engineering journals. Mentions of Arduino in these journals alone have gone from zero to more than 150 in just in the last two years.


While it may be best known as staple for hobbyists, Makers, and hackers who build on their own time, Arduino and Atmel have a strong and rapidly growing following among professional engineers and researchers.

For biotech researchers like myself, experimental setups often require highly specific instruments with strict design rules for parameters such as timing, temperature, motion, force/pressure, and light. Such specific instruments would be time-consuming and expensive to have custom built, as the desired experimental conditions often change as we investigate different samples, cell types, etc. Here, Atmel chips and Arduino boards find a nice niche for making your own affordable, custom setups that are repeatable, precise, and automated. Arduino and Atmel provide microcontrollers in a myriad of form factors, I/O options, and connectivity that are available from a number of vendors. Meanwhile, freeware Arduino code and hardware drivers are also available with many sensors and actuators to go with your board. Best of all, Arduino is designed for a wide audience and range of experiences, making it easy to use for a variety of projects and complexities. So as experimental conditions or goals change, your hardware can easily be re-purposed and re-programmed according to specifications.

Arduino’s acceptance into the biotech research community is evident from its increasing mentions in high profile journals in science and engineering including Nature Methods, Proceedings of the National Academy of the SciencesLab on a Chip, Cell, Analytical Chemistry, and the Public Library of Science (PLOS). Mentions of Arduino in these journals alone have gone from zero to more than 150 in just in the last two years.

In recent years, Arduino-powered methods have started to appear in a variety of cutting edge biotechnology applications. One prominent example is optogenetics, a field in which engineered sequences of genes can be turned on and off using light. Using Arduino-based electronic control over lights and motors, researchers have constructed tools to measure how the presence or absence of these gene sequences can produce different behaviors in human neurons [1][6][7] or in bacterial cells [2]. Light and motor control has also allowed for rapid sorting of cells and gene sequences marked with fluorescent dyes, which can be detected by measuring light emitted to photodiodes. While the biology driving this research is richly complex and unexplored, the engineering behind the tools required to observe and measure these phenomena are now simple to use and well-characterized.

Neuroscientists Voights, Sanders, and Newman at the Open Ephys project provide walkthroughs and add-ons for using Arduino to help them create tools for probing cells.  From left to right, Arduino-based hardware for creating custom electrodes, providing multi-channel input to neurons, and for control over optogenetic lighting circuits.  [6],[7]

Neuroscientists Voights, Sanders, and Newman at the Open Ephys project provide walkthroughs and add-ons for using Arduino to help them create tools for probing cells. From left to right, Arduino-based hardware for creating custom electrodes, providing multi-channel input to neurons, and for control over optogenetic lighting circuits. [6],[7]

Neuroscientists Voights, Sanders, and Newman at the Open Ephys project provide walkthroughs and add-ons for using Arduino to help them create tools for probing cells. From left to right, Arduino-based hardware for creating custom electrodes, providing multi-channel input to neurons, and for control over optogenetic lighting circuits. [6],[7]

Arduino-based automation can be used for supplanting a number of traditional laboratory techniques including control of temperature, humidity, and/or pressure during cell culture conditions; monitoring cell culturing through automated sampling and optical density measurements over time; neurons sending and receiving electrochemical signals; light control and filtration in fluorescence measurements; or measurement of solution salinity. This kind of consistent, automated handling of cells is a key part of producing reliable results for research in cell engineering and synthetic biology.

Synthetic biologists Sauls et al. provide open-source schematics for creating an Arduino-powered turbidostat to automate the culturing of cells with recombinant genes. [5]

Synthetic biologists Sauls et al. provide open-source schematics for creating an Arduino-powered turbidostat to automate the culturing of cells with recombinant genes. [5]

Synthetic biologists Sauls et al. provide open-source schematics for creating an Arduino-powered turbidostat to automate the culturing of cells with recombinant genes. [5]

Arduino has also found an excellent fit in the microfluidics communityMicrofluidics is the miniaturization of fluid-handling technologies—comparable to the miniaturization of electronic components. The development of microfluidic technologies has enabled a myriad of technical innovations including DNA screening microchips, inkjet printers, and the screening and testing of biological samples into compact and affordable formats (often called “lab on a chip” diagnostics) [3]. Their use often requires precise regulation of valves, motors, pressure regulation, timing, and optics, all of which can be achieved using Arduino. Additionally, the compact footprint of the controller allows it to be easily integrated into prototypes for use in medical laboratories or at the point of care. Recent work by the Collins and Yin research groups at MIT has produced prototypes for rapid, point-of-care Ebola detection using paper microfluidics and an Arduino-powered detection system [4].

Microfluidic devices made from paper (left) or using polymers (right) have been used with Arduino to create powerful, compact medical diagnostics (Left: Ebola diagnostic from Pardee et. Al [4], Right: Platelet function diagnostic from Li et al. [9])

Microfluidic devices made from paper (left) or using polymers (right) have been used with Arduino to create powerful, compact medical diagnostics (Left: Ebola diagnostic from Pardee et. Al [4], Right: Platelet function diagnostic from Li et al. [9])

Microfluidic devices made from paper (left) or using polymers (right) have been used with Arduino to create powerful, compact medical diagnostics (Left: Ebola diagnostic from Pardee et. Al [4], Right: Platelet function diagnostic from Li et al. [9])

Finally, another persistent issue in running biological experiments is continued monitoring and control over conditions, such as long-term time-lapse experiments or cell culture.   But what happens when things go wrong? Often this can require researchers to stay near the lab to check in on their experiments. However, researchers now have access to on-board wi-fi control boards [8] that can send notifications via email or text when their experiments are completed or need special attention.  This means fewer interruptions, better instruments, and less time spent worrying about your setup.

The compact Arduino Yun microcontroller combines the easy IDE of Arduino with the accessibility of built-in wi-fi to help you take care of your experiments remotely [8]

The compact Arduino Yun microcontroller combines the easy IDE of Arduino with the accessibility of built-in wi-fi to help you take care of your experiments remotely [8]

True to Arduino’s open-source roots, the building, use, and troubleshooting of the Arduino-based tools themselves are also available in active freeware communities online [5]–[7].

Simply put, Arduino is a tool whose ease of use, myriad applications, and open-source learning tools have provided it with a wide and growing user base in the biotech community.


Melissa Li is a postdoctoral researcher in Bioengineering who has worked on biotechnology projects at UC Berkeley, the Scripps Research Institute, the Massachusetts Institute of Technology, Georgia Institute of Technology, and the University of Washington. She’s used Arduino routinely in customized applications in optical, flow, and motion regulation, including a prototype microfluidic blood screening diagnostic for measuring the protective effects of anti-thrombosis medications [9], [10]. The opinions expressed in this article are solely her own and do not reflect those of her institutions of research.

[1]       L. J. Bugaj, A. T. Choksi, C. K. Mesuda, R. S. Kane, and D. V. Schaffer, “Optogenetic protein clustering and signaling activation in mammalian cells,” Nat. Methods, vol. 10, no. 3, pp. 249–252, Mar. 2013.

[2]       E. J. Olson, L. A. Hartsough, B. P. Landry, R. Shroff, and J. J. Tabor, “Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals,” Nat. Methods, vol. 11, no. 4, pp. 449–455, Apr. 2014.

[3]       E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature, vol. 507, no. 7491, pp. 181–189, Mar. 2014.

[4]       K. Pardee, A. A. Green, T. Ferrante, D. E. Cameron, A. DaleyKeyser, P. Yin, and J. J. Collins, “Paper-Based Synthetic Gene Networks,” Cell.

[5]       “Evolvinator – OpenWetWare.” [Online]. Available: http://openwetware.org/wiki/Evolvinator. [Accessed: 12-Jan-2015].

[6]       “Open Ephys,” Open Ephys. [Online]. Available: http://www.open-ephys.org/. [Accessed: 12-Jan-2015].

[7]       Boyden, E. “Very simple off-the-shelf systems for in-vivo optogenetics”. http://syntheticneurobiology.org/protocols/protocoldetail/35/9 [Accessed: 12-Jan-2015].

[8]       “Arduino Yun”. http://arduino.cc/en/Guide/ArduinoYun [Accessed: 12-Jan-2015].

[9]       “Can aspirin prevent heart attacks? This device may know the answer,” CNET. [Online]. Available: http://www.cnet.com/news/can-aspirin-prevent-heart-attacks-this-device-may-know-the-answer/. [Accessed: 12-Jan-2015].

[10]       M. Li, N. A. Hotaling, D. N. Ku, and C. R. Forest, “Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.,” PloS One, vol. 9, no. 1, 2014.

 

Baskin-Robbins only has 31 flavors, Atmel has 505

Actually these days even Baskin-Robbins has more, but not 505 like Atmel. That’s a lot. While some are AVR, both 8-bit and 32-bit, others are various flavors of ARM (all 32-bit) ranging from older parts like the ARM9 to various flavors of Cortex ranging from the M0 (tiny microcontroller with no pipeline or cache) up to A5. Of course, the ARM product line goes all the way up to 64-bit Cortex-A57 and so on — but they are not in any sense of the word microcontrollers and are really only used in SoCs and not standalone products.

But with 505 choices, how do you pick one? Fortunately, Atmel has made it easy for you to navigate the various flavors. With the help of the company’s MCU product finder, you now have the ability to input your hard constraints, while the tool will narrow down the choices. For example, if you want your microcontroller to have at least 64 Kbytes of flash, then there are only 257 out of the 505 that will suit your needs. For each parameter, users can set minimums and maximums — except for the yes/no choices.

When it comes to the selection process, there are several things that you can constrain:

  • Flash memory (0 to 2Mbytes)
  • Pin count (6 to 324)
  • Operating frequency (1 to 536MHz)
  • CPU architecture (pick from 8-bit AVR, 32-bit AVR, ARM 926 and 920, ARM Cortex M0, M3, M4, A5)
  • SRAM (30 bytes to 256 Kbytes)
  • EEPROM (none to 8 Kbytes)
  • Max I/O pins (4 to 160)
  • picoPower (yes or no)
  • Operating voltage (various ranges from 0.7V to 6V)
  • Operating temperature (various from -20oC to 150oC)
  • Number of touch channels (none to 256)
  • Number of timers (1 to 10)
  • Watchdog (yes or no)
  • 32KHz real time clock (yes or no)
  • Analog comparators (0 to 8)
  • Temperature sensor (yes or no)
  • ADC resolution (8 to 16 bits)
  • ADC channels (2 to 28)
  • DAC channels (0 to 4)
  • UARTs (0 to 8)
  • SPI (1 to 12)
  • TWI (aka I2C) interface (none to 6)
  • USB interface (none, device only, host+OTG, host and device)
  • PWM channels (0 to 36)
  • Ethernet interfaces (none to 2)
  • CAN interfaces (none to 2)

Wow, that’s a lot of options! But after a couple of dozen selections, you can narrow down your choice to something manageable. Here’s how the interface will appear:

Say for instance, I wanted to pick a microcontroller, an ARM Cortex of some flavor. Already choices are down to 189. I want 32K to 128K of flash (now down to 73 choices). I want it to run at an operating frequency of at least 64 MHz (now down to 10). I want 4K of SRAM (turns out all 10 choices already have that much). I need 4 timers. I am now down to 2 choices:

These two choices are the ATSAM3S1C and the ATSAM3S2C — both ARM Cortex-M3s. The first has 64K of flash and the second 128K. I can click on the little PDF icon and access a full datasheet for these microprocessors. If I don’t like the choices and I have some flexibility on specs, then obviously I can go back and play with the parameters to get some new options.

I can click on the “S” to order samples. However, in order to do this, you must already have an Atmel account. Or, with just another click on the shopping cart icon, I can obtain a list of distributors throughout various geographic regions, where I can actually place an order. It even tells me how many each of them have in stock!

For those of you ready to start searching, you can find the Atmel Microcontrollers Selector here.

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on March 2, 2014.

Wireless solutions for the Internet of Things (IoT)

The Internet of Things (IoT) refers to a future world where all types of electronic devices link to each other via the Internet. Today, it’s estimated that there are nearly 10 billion devices in the world connected to the Internet, a figure expected to triple to nearly 30 billion by 2020.

And as Maker Afroditi Psarra recently noted, wearable computing is on track to ultimately connect our physical bodies (wearable tech) with the Internet of Things (IoT).

Clearly, wireless connectivity is more important than ever, as as wireless extends from PC peripherals and home entertainment applications to the smart grid and beyond. To support these sophisticated applications, Atmel offers a complete line of IEEE 802.15.4-compliant, IPv6/6LoWPAN based, ZigBee certified wireless solutions.

They are based on Atmel’s family of RF transceivers, 8-bit and 32-bit AVR and ARM microcontrollers. To facilitate rapid development and speed time to market, Atmel offers a variety of free software stacks, reference designs, wireless modules and development kits. Simply put, the provide everything engineers need to meet the unique needs of low-cost, low-power, wireless control and sensor network applications.

Key features include:

  • Single-Chip Solutions — The Atmel IEEE 802.15.4-compliant single-chip solution combines an AVR microcontroller and best-in-class 2.4GHz RF transceiver. This particular combo is ideal for applications requiring minimal board space and cost – without compromising on MCU and RF performance.
  • Transceivers – Atmel’s wide range of high performance, low-power IEEE 802.15.4-compliant transceivers support regional 700/800/900MHz frequency bands available in China, Europe, Japan and North America, as well as the 2.4GHz band available worldwide. For maximum flexibility, these unique RF transceivers can be combined with Atmel’s microcontrollers over the SPI Interface.
  • Bundles – Flexible IEEE 802.15.4-compliant bundles make it easy to create a solution that is appropriately aligned to your application needs.
  • Modules – ZigBits are compact 802.15.4/ZigBee modules featuring record-breaking range performance and exceptional ease of integration. ZigBits also pack a complete FCC/CE/ARIB certified RF design that eliminates costly and time-consuming RF development and gets your product to market on-time and on-budget.

Additional information about Atmel’s MCU Wireless controllers can be found here.