Tag Archives: 3D Printing Space

Made In Space completes first round of 3D prints on the ISS


After four months, here are all 25 parts that have been 3D-printed in space.


November 24th at 9:28pm GMT is a moment that Made In Space and the entire Maker community will never forget. It was the day that the crew completed the first functional 3D print outside of the Earth’s atmosphere. The historic Zero-G 3D printer arrived at the International Space Station (ISS) on September 23, 2014 and was activated on November 17, a week before making the replacement plastic faceplate for the machine’s own extruder system. Now a couple of months later, the Silicon Valley startup has revealed that has indeed finished its initial round of objects ranging from a calibration coupon to a ratchet. (The ratchet actually marked the first time in history an object had ever been emailed into space as well.)

1*KMyAU2Ucdh5lL98o1IzKwQ

“Although there were only 14 unique objects printed, 25 parts were printed in total. Duplicates were printed in order to determine the consistency of the printer over time,” the team wrote in a recent blog post. “The part that was printed the most was the ‘calibration coupon’ for a total of five times. Like a calibration page that standard inkjet printers print out when connected for the first time, the calibration coupon was used to verify that the 3D printer was working as expected. The ‘tensile test; was printed four times and both the ‘compression test’ and the ‘flex test’ were printed three times. Everything else was printed once.”

While the delivery of the 3D printer was an accomplishment in itself, the project demonstrates the basic fundamentals of useful manufacturing in space. Generally speaking, the devices extrude streams of heated plastic, metal or other material, building layer on top of layer to create three-dimensional item. By testing a 3D printer using relatively low-temperature plastic feedstock on the ISS, NASA hopes that one day astronauts will be able to create objects on-demand, rather than having to carry them into orbit. This will allow for a reduction of spare parts and mass on a spacecraft, which can ultimately change exploration mission architectures altogether. What’s more, astronauts can print these pieces from emails and downloaded files of 3D designs.

iss042e031291

Aside from becoming the first demonstrate of additive manufacturing in space, NASA researchers say that the project provides:

  • A detailed analysis of how acrylonitrile butadiene styrene (ABS) thermoplastic resin behaves in microgravity
  • A comparison between additive manufacturing in Earth’s gravity and in consistent, long-term exposure to microgravity (insufficient in parabolic flights due to “print-pause” style of printing)
  • Advance the TRL of additive manufacturing processes to provide risk reduction, and capabilities, to future flight or mission development programs
  • The gateway to fabricating parts on-demand in space, thus reducing the need for spare parts on the mission manifest
  • A technology with the promise to provide a significant return on investment, by enabling future NASA missions that would not be feasible without the capability to manufacture parts in situ
  • The first step towards evolving additive manufacturing for use in space, and on Deep Space Missions

3DPrinting2

“Based on visual inspection and crew interaction, there were no significant print failures. If you have ever used a 3D printer before you probably realize just how incredible that first sentence is, especially when you then consider the fact that this 3D printer had to first withstand the forces of a rocket launch before printing anything. The successful printing was an incredibly rewarding outcome for the NASA and Made In Space engineering teams who strived to build a robust and hassle-free printer,” the Made In Space crew writes.

As for what the future holds, Made In Space plans on launching its Additive Manufacturing Facility (AMF) later this year, which the team says will not be a science experiment like its predecessor, but rather “a commercially available printer ready for use by anyone on Earth.” The AMF will be twice the size of the demo printer, and will be equipped to handle the manufacturing of larger, more complex objects with finer precision — and with multiple aerospace grade materials. Under the agreement for use of the commercial 3D printer on the ISS, Made In Space will own the machine, and NASA will be a customer paying to use it.

The initial success of the technology demonstration and the startup’s blueprint for the coming months provide a clear path forward in bringing advanced manufacturing capabilities into space. Interested in learning more? You can read Made In Space’s entire update, while also reviewing NASA’s report here.

8 trends shaping the future of making


Our friends at Autodesk explore the significant design and technology trends for 2015. 


Mass personalization will march toward the mainstream

Normal allows its customers to take a few pictures of their ears and uses that to create personalized 3D-printed headphones that fit perfectly in your ear. Normal CEO Nikki Kaufman describes it best as “Personalized, customized products built for you and your body.” In the last few years, we’ve seen companies that offer customers the ability to customize their products, by allowing customers to select from pre-defined options. Diego Tamburini, Manufacturing Industry Strategist at Autodesk predicts that customers will demand products that are uniquely tailored to their needs, tastes and bodies.

(Source: Normal)

(Source: Normal)

Big data will inform our urban landscapes

The design and construction of buildings, infrastructure and the cities they reside in are far too complex to rely on the wooden scale models of old. Architects, engineers and city planners are able to do things that were not possible in the past. As Phil Bernstein, V.P. Strategic Industry Relations at Autodesk put it, “Scale models, however beautifully made, are hardly up to the job of understanding how a building operates in the context of a city.

Thanks to advances in laser scanning, sensors and cloud-based software, cities are now being digitized into 3D models that can be viewed from every angle, changed and analyzed at a moment’s notice.

Cities like Los Angeles, Chicago, Singapore, Tokyo and Boston are working to digitize not just the shapes and locations of the buildings but create a data-rich, living model of the city itself — complete with simulated pedestrian traffic, energy use, carbon footprint, water distribution, transportation, even the movement of infectious diseases.

(Source: Autodesk)

(Source: Autodesk)

Our relationship with robots will be redefined

In the future, humans and robots will collaborate and learn from each other. Today, robots are receiving data and use machine learning techniques to make sense of the world and provide actionable analytics for themselves and humans. Nevertheless, robots are not artists and they will need inspiration and guidance from us for the foreseeable future. In the words of Autodesk Technology Futurist Jordan Brandt, “A robot is no more a craftsman than an algorithm is a designer.”

(Source: Autodesk Gallery France Pop-Up)

(Source: Autodesk Gallery France Pop-Up)

Designs will “grow”

When Lightning Motorcycles wanted to develop a next generation swing arm for their electric motorcycle, they adopted a new Autodesk approach for the project: A computer-aided (CAD) system called Project Dreamcatcher that automatically generates tens, hundreds, or even thousands of designs that all meet your specific design criteria.

Software like Autodesk’s Project Dreamcatcher is ushering a new era of design best described by Autodesk CTO Jeff Kowalski, “We’ll start to see more intensely complex forms, that could appear very organic, or very mathematic.”

(Source: Lightning Motorcycles)

(Source: Lightning Motorcycles)

Manufacturing in space

Made In Space is focused on one thing: making and manufacturing in space. With over 30,000+ hours of 3D printing technology testing, Made In Space has led to the first 3D printers designed and built for use on the International Space Station. As Made in Space CTO Jason Dunn explains, “2015 will be the year of space manufacturing. No longer do engineers need to design around the burdens of launch — instead, in 2015 we will begin designing space systems that are actually built in the space environment. This opens an entirely new book on space system design, a book where complex 3D printed structures that could only exist in zero-gravity become possible.”

(Source: Made in Space)

(Source: Made in Space)

Live materials will be integrated into our buildings

Today, buildings are dead, but new materials and technology are enabling living structures. For example, David Benjamin, founding principal of the design and research studio The Living, is collaborating with plant biologists at the University of Cambridge in England to grow new composite materials from bacteria, a process that uses renewable sugars as a raw material rather than non-renewable petroleum used for plastics. In 2014, The Living delivered Hy-Fi, a “living” installation for the Museum of Modern Art and MoMA PS1’s Young Architects Program competition. The temporary installation involved a 40-foot-tall tower with 10,000 bricks grown entirely from compostable materials — corn stalks and mushrooms — and developed in collaboration with innovative materials company Ecovative. That building was disassembled at the end of the summer and all of the bricks have been composted, returning to grade A soil.

(Source: The Living)

(Source: The Living)

Virtual and augmented reality will be integrated into everyday apps

New virtual devices like the Oculus Rift and augmented reality applications will require an innovative generation of spatial designers. According to Autodesk Technology Futurist Jordan Brandt, current touchscreen interaction will give way to ‘Immersion Design’ that leverages the spatial dimensions offered through emerging augmented and virtual reality platforms.

There’s a bright future for architecture students, game designers and multi-dimensional talent to join app development teams.

(Source: Autodesk and Neoscape)

(Source: Autodesk and Neoscape)

The amount of 3D data will rapidly increase

“With the ability to create 3D models on mobile devices through apps like 123D Catch or the Structure sensor, virtually anyone can begin to capture the spatial world around them. Coupled with the broader adoption of WebGL technology and 3D printing, we can expect an explosion in the amount of 3D data available in 2015. Responding to user demand, social platforms will enable direct sharing of 3D data and start to provide immersive, collaborative experiences.” — Autodesk Technology Futurist, Jordan Brandt

(Source: 123D Catch)

(Source: 123D Catch)

This article written by the Autodesk team originally appeared on Medium.