Tag Archives: 32-bit ARM Cortex-M4

1:1 interview with Jean Anne Booth of UnaliWear


“What really makes the Kanega Watch different is that it goes where you go, both inside your home and away. It is discreetly styled, so there’s no stigma from wearing an assistive device, and it speaks to you in words.” 


In this interview, we feature Jean Anne Booth, a serial entrepreneur with a successful track record in hardware innovation, having previously launched and sold two large and notable companies. Her current project is UnaliWear, a wearable health technology startup that has recently made its Kickstarter debut. She comes with a wealth of experience, and her timing could’t be better as the wearable digital health market continues to unfold. What’s more, Kanega Watch — which we recently featured on Bits & Pieces — is looking to bring a much-needed vision for practical usage to that space.

UnaliWear-Wearable-Tech-Kanega-Watch-Kickstarter

Tom Vu: What’s the main driver to going about this once again? Well, considering you did this before as the first person to launch the ARM Cortex-M3 at Luminary Micro?

Jean Anne Booth: Great question! I actually retired for a couple of years after I sold my last company to Texas Instruments. During this period, my mom turned 80, and she had a couple of incidents that made me start looking for a personal emergency response system for her. Many of the assistive devices available are flawed in one aspect of another. Most importantly, there are three reasons, which make them quite hard for seniors to desire to integrate into their lives. First, they are ugly. Secondly, if they have connectivity, the devices usually require some complicated installation of a tethered smart phone or access point. And one of the most overlooked objections, there is a big “HELP” button. This big button is quite visually disturbing. When you see the big “HELP” button made large for usability and functionality, it is so socially stigmatizing. I wanted my mom to live safely while being independent and not being socially stigmatized.

TV: How is the UnaliWear Kanega Watch different from other wearable tech?

JAB: Focus groups have called Kanega Watch a ‘wearable OnStar for seniors’ because we provide discreet support for falls, medication reminders, and a guard against wandering in a classically styled watch that uses an easy speech interface rather than buttons. What really makes the Kanega Watch different is that it goes where you go, both inside your home and away. It is discreetly styled, so there is no stigma from wearing an assistive device, and it speaks to you in words. The watch brand name “Kanega” is from Cherokee for “speak”.

Unaliwear-Reminders-Alerts-Kanega

TV: Is what you’re creating really going to make our lives better?

JAB: Yes, it’s about being there when it counts. You can wear Kanega Watch on 24×7 basis, so you don’t forget to put it back on, and therefore you’re wearing when you need it. There is a very long battery life, unlike an Apple Watch, Android, or Samsung smartwatch. There is no need for an additional device, either an access point or a smartphone. For seniors, or those who are independent but vulnerable, it can help with issues at night like trips to the bathroom. It’s waterproof, not just water resistant, so you can wear it in the shower/bath (this is where a majority of falls happen), and also in your pool exercises. It works anywhere you go, and those who are vulnerable are not trapped at home. Importantly, there is a convenience to this as you’re wearing everything you need to stay safe.

For instance, here is one of the fundamental characteristics of how the watch works, and why our tagline is “Extending Independence with Dignity.” If the Kanega Watch wants to speak, it will ask permission first. It requests permission to speak by buzzing on the wearer’s wrist like a cellphone on silent, so there’s no visual or audible stigma of wearing an assistive device when socially inappropriate — like at church.

If it detects a potential fall, it will ask if you will need help, because two out of three falls do not require help. In fact, Kanega Watch will continuously monitor you – a kind of continuous welfare check. In a suspected fall, if you don’t respond to the request for permission to speak (for example, if you’re unconscious, unable to move, or unable to speak), then it will begin to escalate and then notify emergency and your contacts for help. There’s practical and smart logic built into the wearable.

Meds

TV: How has your experience in this industry going to help in fulfilling the practical/adoptable use of moving wearable tech toward broader acceptance/use?

JAB: To me, it’s not about advancing a category of technology. It’s about harnessing technology to solve real problems, and in this case, about allowing people to live independently, safely, for as long as possible. It’s been an interesting experience transitioning from semiconductors to healthcare, and has proven to be very rewarding building products that directly make people’s lives better. It’s a fantastic feeling!

TV: What hardware startups do you think are actually doing some really interesting things right now?

JAB: That’s a hard question for me because I’m biased toward products that make a difference and are directly useful. Often what is the most cool and interesting is not at all useful! One thing that our Kickstarter campaign has taught us is that the average person buying things that are cool is not quite in the same category as the people who would buy our wearable for seniors.

TV: How would you describe your team?

JAB: Today, our team consists of a cadre of three founders. Our CTO Marc DeVinney does all the hardware. Brian Kircher, who I’ve worked with for 14 years, does all the software for the Kanega Watch. I do everything else.

TV: Who do you look up to as a mentor now?

JAB: Jimmy Treybig, founder of Tandem Computers, has been a close friend for years and has always been helpful. Jimmy has been a source of a lot of wisdom. For this particular company, another extremely important mentor is my mother, Joan, who is also our Senior User Experience Advisor. She’s put together a number of focus groups, and has also been a lot of help in detailing the use cases.

ffe50af6d67d1f769143c162b16724fc_original

TV: What improvements will your product provide society? Perhaps even help the movement of IoT, connected things and wearables?

JAB: The Internet of Things promises to transform daily life, making it easier to work, shop, merchandise, exercise, travel and stay healthy. Really, thanks to billions of connected devices — from smart toothbrushes and thermostats to commercial drones and robotic companions for the elderly. It also will end up gathering vast amounts of data that could provide insights about our habits, religious beliefs, political leanings, sentiments, consumer interest, sports, and even as far as go to other highly personal aspects of our lives. I think the maturation of IoT and wearables is intertwined together. In some respects, what we are building at UnaliWear is also helping cement together the more meaningful adoption of wearables. In our particular case with the Kanega Watch, we couldn’t solve our user problem unless we could provide a better wearable device that is constantly connected all the time. Ultra-low power is very challenging fundamental backstop for every wearable device, and for most IoT devices as well. Our wearable includes cellular, GPS, and Wi-Fi built into one seamlessly integrated non-obtrusive wearable.

Our design goal for the Kanega Watch is that it must be wearable 24×7. It cannot be in a pocket or have requirements of being tucked into a purse. It also must have enough communications capability so that a senior is not stuck in their home all the time. To meet this goal, we have a unique patent-pending quick swap battery system enabling a user to not have to take the watch off to charge. The wearable can last 2 days for most users, and it comes with four batteries. It’s designed to have two batteries available on the charger and two batteries on the watch at all times. The device eliminates the need to be near a base station or smartphone.

Today, simply using built-in smartphone or app presents a couple of problems. Most seniors today don’t have nor operate a smart phone. Less than 5% of seniors over 80 years in age have a smart phone today. For the few seniors who do have smart phones, there are still problems using a smart phone for falls and reminders, because today’s smart phones still have only about 10 hours of real usage time per day.

TV: By 2050, what are some of your predictions for consumers or users interacting with technology on a day-to-day basis?

JAB: I do think that speech will definitely play a larger part in our interaction paradigm. Remember that popular Star Trek movie scene where they come back in time to save the whales and Scotty goes with Checkov to analyze the strength of the materials being used to make a housing for the whales, and the computer he is given is the original Macintosh. Scotty speaks to the Mac, Checkov reminds him that’s not the interface, and then Scotty picks up the mouse and speaks to the mouse. This seems to show a natural interface into the future as Scotty mistakes the old computer for one he can easily and naturally talk to. Now looking at where we are today – the senior population is the fastest growing population segment in the US, and by 2030 will be 20% of our total population. Today, there are 17 million seniors above the age of 75 who are living independently, yet only 2.2 million of those independent seniors have any kind of monitoring system to get help. Today’s 17 million seniors will burgeon to 27 million seniors by 2030. Natural speech interfaces and connectivity will be control what we’re able to build in the future.

TV: What question might you pose to someone in the middle of making a choice to purchase or carry something that is connected and electronically enabling for a senior in their lives?

JAB: I think the message is simple. We show over and over again that if you want to extend the time and quality of someone’s life, then extend their independence. That means you need products that a senior is willing to wear, and that fits into their active lifestyle. At its core, the wearable is based on an Atmel | SMART SAM4L Cortex-M4 MCU running FreeRTOS as the real time operating system and also includes the ATWINC1500 SmartConnect device for Wi-Fi. The Kanega Watch includes both Wi-Fi and cellular communications; when you’re at home, it uses your Wi-Fi. When you’re away, it transitions seamlessly to cellular.

unaliwear-prototype-progression

TV: Does the Kanega Watch have initial roots from the Maker Movement?

JAB: Yes, the roots are definitely Maker Movement – and also a lot of rapid prototyping (hardware’s version of the Lean Startup). We built our first industrial design prototypes at the TechShop in Austin, and our very first alpha design used a 3D-printed “box” as the “watch”. We make a lot of prototypes with rapid turn 3D-printing and CNC-machined aluminum. Before we built our own first prototypes, we created a software prototype on the Omate TrueSmart smart watch, which has dual 1.3 GHz ARM Cortex-A8’s running Android 4.0 “Ice Cream Sandwich.” Our only challenge with this prototype is that the battery life was an unsatisfying 5 hours – which meant that I had a battery pocket in my pocket and kept the watch plugged in with a cord hidden under my shirt when I needed to demonstrate over a long period, such as at a conference like SxSW. I like our current prototypes better!


Interested in learning more or have an elderly family member who could benefit from the Kanega Watch? Head over to UnaliWear’s current Kickstarter campaign here.

Walk this way! Arki does more than just count steps

Arki — which recently made its Kickstarter debut — is a stylish wearable band that not only tracks a wearer’s daily activities, but seeks to improve posture along the way. In short, the device analyzes your steps, then vibrates if and when you aren’t standing tall. Guess this means that you may want to stop looking down at your phone while you walk.

ARki

According to the American Podiatric Medical Association, the average person takes anywhere between 8,000 to 10,000 steps a day. That equates to nearly 115,000 miles — more than four times the circumference of the globe. However, are enough steps (pun intended!) being taken to maintain good posture and healthier lifestyles?

Aside from proper walking form, think of the 1,000-plus pedestrians injured annually while glancing at their mobile device. Just imagine, had the Arki been present, these epic fails (seen in the video below) may have been prevented…

The brainchild of Los Angeles and Seoul-based startup Zikto, the latest tech to adorn our wrists is powered by an Atmel | SMART SAM4LS ARM Cortex-M4 microcontroller (MCU). Ariki offers all the classic activity tracker functions, however in a rather attractive and fashionable package. A popular complaint around fitness trackers is that they are bulky and not practical to wear in professional settings. However, the newly-unveiled device caters to everyone, from activity seekers to fashionistas, with its waterproof casing and interchangeable straps to match any ensemble.

While a number of competitive bands simply collect and display the number of steps taken and calories burnt, Arki actually shares quantified measurements of the quality of steps achieved by a users.

d49bec4a1d10d311bac8427c79111a6f_large-1

This is done through a function they call “Sound Walking,” which alarms wearers of their bad walking postures via haptic vibrations on a real-time basis. For instance, when users are peering down at their smartphone or putting a hand in a pocket while taking a stroll, the SAM4LS controlled gadget automatically senses an imbalance of their bodies and transmits a signal.

e8a96ea700f050fe3cc7ff2edf881ed8_large

“Arki measures your swing speed, rotation angle with respect to gravity, transferred vibration from the feet and more. Based on these measurements, Arki learns your walking habits, such as looking at a smartphone while walking or putting a hand in a pocket,” a company rep explains.

Truth of the matter, no one has a perfectly balanced body and subsequently, left and right arm swings are never identical. As the team notes, Arki utilizes this imperfection to compare the two swings to determine the extent of a body’s imbalance, including shoulders, back and hips. Normally, a user would wear Arki on their preferred side; however, Zikto advises that once in a while, by switching arms, Arki can collect both arms’ swing data. As a result, the smart band can offer personal workout recommendations to improve and recalibrate your balance.

aa3e0d3b878142c2eb5cc00efefe4fd4_large

Unlock your computer with a flick of the wrist? In what may sound like something out of Minority Report, since each person’s gait is unique much like fingerprints, Arki is also capable of biometric authentication, meaning a user simply has to move his or her mouse back and forth while wearing Arki, and can access their device.

In addition to being extremely customizable and functional, Arki also works with smart home systems to sync wearer’s thermostats to complements their physical activity. “Once Arki detects you sleeping, your thermostat will turn down to your ideal temperature,” the team notes. This makes for more comfortable nights, and more importantly, lower electric bills.

89c00dcaf13dd113c9e9f1857ac4c452_large

Given the tremendous success of their Kickstarter campaign, Zikto has decided to also add call and SMS notifications to Arki’s interface.

Well into its crowdfunding campaign, the team has well exceeded its $100,000 pledge goal. Following Kickstarter, Zikto is planning to expand their business to a medical service in connection with hospitals by developing its own algorithm and utilizing big data. If all goes to schedule, Zikto hopes to ship the first batch of Arkis to all backers come early April 2015. Interested in learning more or walking correctly, stroll on over to its official page here.

Exploring smart meters in the Internet of Things

The Internet of Things (IoT) isn’t a single homogenous market but splits up into different segments with very different requirements. A lot of IoT markets are still in our future: next generation wearable medical devices, autonomous cars and more. One area where IoT has been going strong, long enough that it probably pre-dates the catchy buzzword IoT, is smart power meters.

Atmel recent announced their latest power line communications SoC specifically designed for this market. The SAM4CP16B is an extension of Atmel’s SAM4Cx smart energy platform built on a dual-core 32-bit ARM Cortex-M4 architecture. It is fully compatible with Atmel’s ATPL230A OFDM physical layer device compliant with PRIME standard specification. The flexible solution addresses OEM’s requirements for various system partitioning, BOM reduction and time-to-market requirements by incorporating independent application, protocol stack and physical layer processing functions within the same device. Key features of the SoC include integrated low-power driver, advanced cryptography, 1MB of embedded Flash, 152KB of SRAM, low-power real-time clock, and an LCD display controller.

I think that as various submarkets of the Internet of Things develop, we will see a lot of devices like this; SoCs that integrate everything that is required for a particular application, leaving the system company to customize the hardware, add their own software and so on. IoT will not be a market like mobile, with huge chips being done in the latest process generation. Many IoT designs will include analog, RF and sensors, all of which are best designed in older processes like 65nm or even 130nm.

The system volumes for many designs will be relatively low and so designing a specific chip for each application will be unattractive. Even in mobile where the volumes are much higher, only Apple and Samsung design their own application processors, as far as I know. Everyone else licenses one from Qualcomm, Mediatek or others… Even Apple gets the modem (radio) from Qualcomm. The aggregate volumes will end up being large (there will be a lot of things) so the prize goes to the semiconductor companies that do the best job of designing chips that match what the system companies require.

Interested in learning more? The data sheet for the part can be found here. (Warning: It’s 1,000 pages!)

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on August 13, 2014.

Atmel introduces next-gen SoC solution for smart metering

Atmel recently announced the introduction of its latest Power Line Communication System-on-Chip (SoC) solution designed for smart metering applications.

SmartEnergy_Update_Category_728x280_080514

The Atmel SAM4CP16B is an extension of Atmel’s SAM4Cx smart energy platform built on a dual-core 32-bit ARM® Cortex®-M4 architecture. Fully compatible with Atmel’s ATPL230A OFDM physical layer (PHY) device compliant with PRIME standard specification, this highly flexible solution addresses OEM’s requirements for various system partitioning, BOM reduction and time-to-market requirements by incorporating independent application, protocol stack and physical layer processing functions within the same device.

Atmel-smart

“We continue to build on the success of our industry leading SAM4Cx platform and offer best-in-class embedded connectivity, flexibility and cost structure for high-volume smart metering deployments,” said Andres Munoz, Atmel Marketing Manager, Smart Energy Communications. “Furthermore, additional enhancements developed to meet PRIME standard specifications provide unprecedented performance in rigorous environments.”

atmel_SMART_HomePage_980x352

As part of the Atmel® | SMART™ family, the solution includes integrated low-power driver, advanced cryptography, 1Mbytes of embedded Flash, 152Kbytes of SRAM, low-power RTC, and LCD controller. Additional key features include:

  • Application/Master Core
    — ARM Cortex-M4 running at up to 120 MHz
    — Memory Protection Unit (MPU)
    — DSP Instruction
    — Thumb®-2 instruction set
    — Instruction and Data Cache Controller with 2 Kbytes Cache Memory
  • Co-processor
    — ARM Cortex-M4F running at up to 120 MHz
    — IEEE® 754 Compliant, Single precision Floating-Point Unit (FPU)
    — DSP Instruction
    — Thumb-2 instruction set
    — Instruction and Data Cache Controller with 2 Kbytes Cache Memory
  • Symmetrical/Asynchronous Dual Core Architecture
    — Interrupt-based Interprocessor Communication
    — Asynchronous Clocking
    — One Interrupt Controller (NVIC) for each core
    — Each Peripheral IRQ routed to each NVIC Input
  • Cryptography
    — High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
    — TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
    — Classical Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
    — Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
  • Safety
    — 4 Physical Anti-tamper Detection I/O with Time Stamping and Immediate Clear of General Backup Registers
    — Security bit for Device Protection from JTAG accesses
  • PRIME PLC embedded modem
    — Power Line Carrier Modem for 50 Hz and 60 Hz mains
    — 97-carriers OFDM PRIME compliant
    — DBPSK, DQPSK, D8PSK modulation schemes available
    — Additional enhanced modes available: DBPSK Robust, DQPSK Robust
    — Eight selectable channels between 42kHz to 472kHz available
    — Baud rate Selectable: 5.4 to 128.6 kbps
    — Four dedicated buffers for transmission/reception
    — Up to 124.6 dBμVrms injected signal against PRIME load
    — Up to 79.6 dB of dynamic range in PRIME networks
    — Automatic Gain Control and continuous amplitude tracking in signal reception
    — Class D switching power amplifier control
  • Shared System Controller
    — Power Supply
    — Embedded Core and LCD Voltage Regulator for single supply operation
    — Power-on-Reset (POR), Brownout Detector (BOD) and Watchdog for safe operation
    —Low Power Sleep and Backup modes

Interested in learning more about Atmel’s new comprehensive smart energy platform? You can check out our recent deep dive on the subject here.