Tag Archives: 32-bit ARM cores

Exploring smart meters in the Internet of Things

The Internet of Things (IoT) isn’t a single homogenous market but splits up into different segments with very different requirements. A lot of IoT markets are still in our future: next generation wearable medical devices, autonomous cars and more. One area where IoT has been going strong, long enough that it probably pre-dates the catchy buzzword IoT, is smart power meters.

Atmel recent announced their latest power line communications SoC specifically designed for this market. The SAM4CP16B is an extension of Atmel’s SAM4Cx smart energy platform built on a dual-core 32-bit ARM Cortex-M4 architecture. It is fully compatible with Atmel’s ATPL230A OFDM physical layer device compliant with PRIME standard specification. The flexible solution addresses OEM’s requirements for various system partitioning, BOM reduction and time-to-market requirements by incorporating independent application, protocol stack and physical layer processing functions within the same device. Key features of the SoC include integrated low-power driver, advanced cryptography, 1MB of embedded Flash, 152KB of SRAM, low-power real-time clock, and an LCD display controller.

I think that as various submarkets of the Internet of Things develop, we will see a lot of devices like this; SoCs that integrate everything that is required for a particular application, leaving the system company to customize the hardware, add their own software and so on. IoT will not be a market like mobile, with huge chips being done in the latest process generation. Many IoT designs will include analog, RF and sensors, all of which are best designed in older processes like 65nm or even 130nm.

The system volumes for many designs will be relatively low and so designing a specific chip for each application will be unattractive. Even in mobile where the volumes are much higher, only Apple and Samsung design their own application processors, as far as I know. Everyone else licenses one from Qualcomm, Mediatek or others… Even Apple gets the modem (radio) from Qualcomm. The aggregate volumes will end up being large (there will be a lot of things) so the prize goes to the semiconductor companies that do the best job of designing chips that match what the system companies require.

Interested in learning more? The data sheet for the part can be found here. (Warning: It’s 1,000 pages!)

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on August 13, 2014.

Atmel | SMART MCUs are here!

Atmel Corporation, a global leader in microcontroller (MCU) and touch solutions, today announced the company has launched Atmel® | SMART™, the new brand of ARM®-based microcontrollers and has expanded its SMART portfolio with new SmartConnect SAM W23 modules, enabling Wi-Fi connectivity and the best of high performance and low power technology for Internet of Things (IoT) applications.

Atmel® | SMART™ ARM-based microcontrollers deliver the platform for intelligent, connected devices in the era of IoT, wireless and energy efficiency. These solutions include embedded processing and connectivity—as well as software and tools, designed to make development faster and more cost-effective to bring the best-in-class products to market. Atmel® | SMART™ MCUs combine powerful 32-bit ARM cores with industry-leading low-power technology and intelligent peripherals.

“Through the convergence of Atmel’s ultra-low power MCUs and Wi-Fi solutions, Atmel continues to benefit through the vast range of products developed such as SmartConnect,” said Reza Kazerounian, senior vice president and general manager, microcontroller business unit at Atmel. “Encompassing our unique combination of high performance, power efficiency and design flexibility, Atmel® | SMART™ is a true testament to Atmel’s commitment to innovation and is poised to deliver breakthrough technologies and key ingredients powering The Internet of Things.”

As part of the Atmel® | SMART™ product offering, the SAM W23 module offers the ideal solution for designers seeking to integrate Wi-Fi connectivity even with limited experience with IEEE802.11, RTOS, IP Stack or RF. These modules are based on Atmel’s industry leading ultra-low-power Wi-Fi SoC (System on Chip) combined with Atmel’s ARM® Cortex®M0+ based microcontroller technology. This turnkey system provides an integrated software solution with application and security protocols such as TLS, integrated network services (TCP/IP stack) and a standard Real Time Operating System (RTOS) which are all available through a simple serial host interface (SPI, UART) within Atmel Studio 6’s integrated development platform (IDP).

“With the increasing demand for extended battery life and greater connectivity, the SAM W23 eliminates the complexities associated with using traditional Wi-Fi solutions with an ease of use ideal for a vast range of industrial and consumer markets,” said Kaivan Karimi, vice president and general manager of the wireless microcontroller business unit at Atmel. “Whether you are a OEM, a developer or a maker, the SAM W23 paired with our broad portfolio of MCUs enables you to accelerate your development of IoT products, providing increased seamless connectivity with a whole new world of device use cases.”

Evaluation Kit

To help accelerate a designer’s development, the SAM W23, mounted on an XPRO wing, and compatible with any existing Atmel Xplained PRO evaluation board, is available now. The SmartConnect library is a turnkey Software Framework available in Atmel Studio that removes the need to understand the Wi-Fi stack, allowing designers to focus on adding functions.

Availability

The SAM W23 is available both as a fully certified module, as well as a reference design kit for OEMS to build modules based on the SAM W23 chipset. Developers can use the SAM W23 platform as a standalone system or as an add-on solution to enable Wi-Fi connectivity in an existing design.