Tag Archives: 32-bit ARM Core

Securing the Internet of Streams


The evolution of IoT is now at a point that it will require a comprehensively redesigned approach to security threats in order to ensure its continuous growth and expansion.


The relentless flow of new product introductions keeps fueling the gargantuan estimates of billions of connected communicating computing devices which is projected to imminently make the Internet of Things ubiquitous within every facet of our lives. The IoT has been portrayed as the key enabler of a smarter world with compelling use cases that cut across a wide array of both personal and industrial ecosystems.

A great description is that the IoT is the global nervous system. This could be a pun, as IoT is increasingly producing troubling headlines. Stories abound, detailing security breaches that sound as if they were taken from a sci-fi movie, from hacked security cameras to a spamming refrigerator.

IoT-Global-Nervous-System

Figure 1 (Source: re-workblog.tumblr.com)

The explosive growth of the IoT coincides with an alarming increase in reported rates of identity theft and hacker attacks on everyday gadgets and appliances. Security researchers have easily established the feasibility of attacks against TVs, cars, security cameras, and medical equipment. There is much more than stolen money on the line if these types of attacks are carried out. The evidence demonstrates that existing security mechanisms are insufficient or ill-suited to address the risks inherent with the ubiquitous deployment of the IoT.

The need for a new original approach

The traditional approach to security, applied to both consumer and business domains, is one of separation – preventing those who are considered bad actors from accessing devices and networks. However, the dynamic topology of the network environments in which IoT applications are deployed largely invalidates the separation approach, making it both impractical and overly rigid. For example, with BYOD (bring-your-own-device), enterprises struggle to apply traditional security schemes to devices that may have been compromised while outside the perimeter firewall.

Many IoT devices self-configure and run autonomously. User interaction is limited to the devices’ operations, and there are no means to change security parameters. These devices rely on the manufacturer to implement security, both in the hardware and the software.

Moreover, manufacturers have to consider the broader ecosystem, not just their own products. For example, recent research has revealed inherent security flaws in USB memory stick controller hardware and firmware. Users must be concerned not only about the safety of the data on the memory stick, but if the memory stick controller itself has somehow been compromised.

To thwart similar issues, IoT device vendors are rushing to upgrade their product portfolios to low-power, high-performance microcontrollers that include firmware upgrade and data encryption mechanisms.

Atmel's IoT Layered Security Solutions

Figure 2 (Source: Atmel’s White Paper: Integrating the Internet of Things)

In the hyper-connected world of IoT, security breaches will gravitate towards the weakest link in the chain. It will become very hard to maintain the confidence that any particular device, user, application or service maintains its integrity; instead, the assumption will be that things will occasionally break for a variety of reasons, over which there is little control and no method for fixing. As a result, IoT will force the adoption of new concepts for the establishment of trust.

A smarter network combined

In the loosely coupled world of IoT, security issues are driving a need for greater collaboration among the vendors participating in the ecosystem, recognizing their respective core competencies. Hardware vendors make devices smarter. Software developers make applications and services smarter. The connective tissue, the global Internet with its myriad of communication transports and protocols, is tasked with carrying the data that powers IoT. This begs the question – can the network be made an enabler of IoT security by becoming smarter in its own right?

Context is essential for identifying and handling security threats and is best understood at the application level, where the intent of information is processed. This points towards a higher-level communication framework for IoT – the Internet of Data Streams. This framework enables apps and services to view things as consumers and producers of data. It allows for descriptive representations of devices’ operational status and real-time detection of their presence or absence.

Elevating the functional value of the Internet, from a medium of communication to a network of data streams for IoT, would be highly beneficial to ease collaboration among the IoT ecosystem participants. The smarter network can provide apps and services with the ability to implement logic that detects things that break or misbehave, flagging them as suspect while ensuring graceful and consistent operation using the redundant resources.

InternetOfThingsHorizontal

For example, a smarter network can detect that a connected sensor stopped functioning (e.g. due to a denial of power attack, possibly triggered through some obscure security loophole) and allow the apps that depend on the sensor to provide uninterrupted service to users. Additionally, a network of data streams can foster a global industry of security-as-a-service solutions, which can, as an example, send real-time security alerts to app administrators and device manufacturers.

The evolution of IoT is now at a point that it will require a comprehensively redesigned approach to security threats in order to ensure its continuous growth and expansion. Addressing the surfaced issues from an ecosystem standpoint calls for apps, services and “things” to explicitly handle communication via a smarter data network, which has the promise of placing IoT in safer hands, courtesy of the Internet of Streams.

Low power just got lower with the Atmel | SMART SAM L21

Well, low power just got lower. The Atmel team is excited to announce that it has reached a new low-power standard for its ARM Cortex-M0+ based MCUs with power consumption down to 40 µA/MHz in active mode and 200nA in sleep mode. In addition to ultra-low power, the new platform features full-speed USB host and device, Event System and Sleepwalking,12-bit analog, AES, capacitive touch sensing and much more.

IMG_5037

With billions of devices predicted for the Internet of Things (IoT) market by 2020, there is a need for lower power MCUs that will power these applications without adding load to utility grids or requiring frequent battery changes. Atmel’s latest Atmel | SMART platform is designed specifically for these applications, expanding battery life from years to decades.

Consuming just one-third the power of comparable products in the market today, the new low-power SAM L21 family is the first on the new platform expanding the Atmel | SMART 32-bit ARM-based products using Atmel’s proprietary picoPower technology.

While running the EEMBC CoreMark benchmark, Atmel’s SAM L21 family delivers ultra-low power running down to 40µA/MHz in active mode, consuming less than 900nA with full 32kB RAM retention and real-time clock and calendar, and 200nA in the deepest sleep mode. With rapid wake-up times, Event System, Sleepwalking and the innovative picoPower peripherals, the SAM L21 ultra-low power family is ideal for handheld and battery-operated devices in a variety of markets including IoT, consumer, industrial and portable medical applications.

Architectural innovations in the new platform enables low-power peripherals including timers, serial communications and capacitive touch sensing to remain powered and running while the rest of the system is in a lower power mode, further reducing power consumption for many always-on applications.

SMRA

The Atmel SAM L21 family has amazingly low current consumption ratings for both the active and sleep mode operation which will be a great benefit in targeting the growing battery-powered device market,” said Markus Levy, president and co-founder, EEMBC. “With billions of devices to be brought to market during the era of the Internet of Things, designers can utilize Atmel’s ultra-low power SAM L family to ensure an increased life in these battery-powered devices. To instantiate this power data from Atmel, I’m looking forward to seeing the results from this new platform running our newly established ULPBench, aimed at the ultra-low power microcontroller industry.”

“Atmel is committed to providing the industry’s lowest power technologies for the rapidly growing IoT market and beyond for battery-powered devices,” expained Reza Kazerounian, Atmel SVP and GM, MCU business unit. “Developers for IoT edge nodes are no longer just interested in expanding the life of a battery to one year, but are looking for technologies that will increase the life of a battery to a decade or longer. Doing just that, the new 32-bit MCU platform in the Atmel | SMART family integrating our proprietary picoPower technologies are the perfect MCUs for IoT edge nodes.”

Engineering samples of the SAM L21, along with development tools and datasheet will be available in February 2015. Meanwhile, the SAM L21 can be found all this week in Hall A5, Booth 542 at Electronica.

Vegard Wollan on the AVR and ARM cores and peripherals

In the fifth video of the series, I asked the co-inventor of the AVR microcontroller about the progression of the peripherals in the various microcontrollers Atmel offers. Vegard shares that when they invented the first AVR products, the team was concerned with ease-of-use, a clean instruction set that would run C, instructions that ran in a single cycle, and good quality tools.

However, he was just as proud of the peripherals that they then developed for the XMEGA line of AVR 8-bit chips. There, he said the stress was still on low power, but also a set of peripherals that were high performance, robust, strong, effective, and that included analog and digital advanced peripherals. Additionally, Vegard stressed how the XMEGA event system would allow programmers to handle complex events and take action, all without waking up the CPU core in the part.

Vegard-Wollen_peripherals_AVR_ARM

Vegard Wollan becomes animated when talking about the peripherals in AVR and ARM chips offered by Atmel.

I knew this was cool for the low-power aspect, yet Vegard reminded me that it also allows you to service an interrupt faster and more deterministically — always a good thing in embedded systems. The great news for engineers is that all the cool things Atmel figured out for the XMEGA AVR also went into to the UC3, the 32-bit AVR product lines. Then, we made sure to put these same powerful and flexible peripheral systems into our ARM core-based MCUs. In addition we would add dedicated touch I/O pins and more accurate clocks and references. You can still see the AVR DNA from back in 1990 at the Norwegian University of Science and Technology where the AVR came to life.

What I really loved about Vegard was his humility. Every time I tried to give him credit for the AVR he was sure to remind me that there was a whole team that developed it. And, when I tried to point that the AVR was RISC (reduced instruction set computer) before ARM came out, he told me that he was more proud of the peripherals in all of Atmel’s chips, rather than just the core he invented for the AVR. That’s a good thing to keep in mind.

While using any ARM core will get you the instruction set and header files and open-source tools, Atmel’s ARM chips will also get these great peripherals and the event system to tie them all together, while the CPU sleeps peacefully. A recent article helped me understand Vegard’s Norwegian modesty, but I am sure glad he and his team worked on the AVR and ARM chips.

Preview: ARM TechCon 2014

Fresh on the heels of World Maker Faire, the Atmel team is headed down the road to the city of Santa Clara for the 10th Annual ARM TechCon 2014. Held October 1-3 inside the Santa Clara Convention Center, the Atmel team will showcase the latest Atmel | SMART ARM-based microcontrollers driving smart, secure and connected devices for the Internet of Things.

TechConGoogle+_1080x608_Final

At the Atmel booth (#205), visitors will have a chance to explore a number of hands-on demos including:

…. and, we will also be making announcement around the Atmel | SMART MCU family which you will surely not want to miss. Stay tuned!

atmel_SMART_Microsite_980x352

Anyone who’s previously attended ARM TechCon — or any event where Atmel was present for that matter– knows one of the highlights is the free giveaways! On Wednesday, we will be distributing several Atmel | SMART SAM4L Evaluation Kits from our booth (#205). Whereas on Thursday, Atmel | SMART SAM D20 Xplained Pro Evaluation Kit will be given away during the ARM Connected Community demo at 1:30pm and 5:00pm PT inside the ARM booth (#300).

SMART123

Meanwhile, Andreas Eieland, Atmel Senior Product Marketing Manager, will educating attendees on why ARM’s Cortex-M0+ was the ideal architecture to use as a foundation for the highly-flexible and easy-to-use SAM D MCU and its potential use cases in home automation, consumer devices, smart metering and industrial applications. Don’t this this session, aptly entitled “Think Beyond the Core,” which is slated to take place on Wednesday at 2:00pm PT.

Other notable key moments in and around the show include an infrastructure panel with Dell and Oracle moderated by ARM’s Ian Ferguson, discussions around the new Cortex-M7 processor, IoT and wearable tech-focused developer workshops, as well as Thursday’s keynote with ARM CEO Simon Segars.

Be prepared to be blown away by not one, but two keynote speakers: Chris Anderson, CEO of 3D Robotics, and Erica Kochi, Chief Innovator for UNICEF. Anderson will be discussing the latest developments in the drone community along with new opportunities in robotics for ARM, while Kochi will explore the ways in which UNICEF and ARM are working together on power and efficiency improvements for mobile devices.

Thinking of visiting the show? Receive a free ARM Expo Pass using the code: ARMExp100. Hurry, this promotion expires on September 30th.

Unable to attend? As a leading member of the ARM Connected Community, rest assured we will be tweeting away and dishing out up-to-the-minute happenings from the show floor. Follow along using the hashtags #ARMTechCon and #AtmelLive throughout the week.

ARM unveils 32-bit Cortex-M7 processor for the Internet of Things

ARM has unveiled a new 32-bit Cortex-M processor that delivers double the compute and digital signal processing (DSP) capability of today’s most powerful ARM-based MCUs. The ARM Cortex-M7 is targeted at high-end embedded applications used in next generation vehicles, connected devices, and smart homes and factories. Atmel has been named one of the early lead licensees of the Cortex-M7 processor, enabling us to deliver exciting new products to the market in the forthcoming months.

Cortex-M7_Diagrams_V2(3)-03-03+(1)

“The addition of the Cortex-M7 processor to the Cortex-M series allows ARM and its partners to offer the most scalable and software-compatible solutions possible for the connected world,” explained Noel Hurley, General Manager of ARM’s CPU Group. “The versatility and new memory features of the Cortex-M7 enable more powerful, smarter and reliable microcontrollers that can be used across a multitude of embedded applications.”

The Cortex-M7 achieves an impressive 5 CoreMark/MHz. This performance allows the Cortex-M7 to deliver a combination of high-performance and digital signal control functionality that will enable MCU silicon manufacturers to target highly demanding embedded applications — including next-generation vehicles, connected devices and smart homes —  while keeping development costs low. System designers can therefore take advantage of extensive code reuse which in turn offers lower development and maintenance costs. Through these products, the benefits delivered by the Cortex-M7 processor will be evident in our increasingly connected world.

Cortex-M7 summary

Enabling faster processing of audio and image data and voice recognition, the benefits delivered by the Cortex-M7 processor will be immediately apparent to users. The core also provides the same C-friendly programmer’s model and is binary compatible with existing Cortex-M processors. Ecosystem and software compatibility offers simple migration from any existing Cortex-M core to the new Cortex-M7.

“The Cortex-M7 is well positioned between Atmel’s Cortex-M based MCUs and Cortex-A based MPUs enabling Atmel to offer an even greater range of processing solutions,” said Reza Kazerounian, Atmel Senior Vice President and General Manager, MCU Business Unit. “Customers using the Cortex-M-based MCU will be able to scale up performance and system functionality, while keeping the Cortex-M class ease-of-use and maximizing software reuse. We see the ARM Cortex-M7 addressing high-growth markets like IoT and wearables, as well as automotive and industrial applications that can leverage its performance and power efficiency.”

WhiteGoods cortex-M7

In today’s connected world, future devices will be getting smarter in order to operate more efficiently using minimal energy and resources. As ARM notes in its blog, these next generation products are moving to more sophisticated displays, advanced touchscreen panels, and advanced control motors to include field-oriented control algorithms in their motor driver control in order to operate more efficiently. Some of these also need to run communications software stacks to interface with other appliances and interface with the outside world to provide billing information, power usage and maintenance information.

All of these requirements demand more performance from a microcontroller, which lies at the heart of the appliance… and Cortex-M7 based MCUs will deliver that performance.

“The day the refrigerator talks to the milk carton, that’s in a gimmicky category. But to have the dishwasher and refrigerator coordinate their cycles to reduce the electricity load — that becomes useful,” ARM CEO Simon Segars told Reuters.

Cortex-M7-chip-diagramLG

Key features of the ARM Cortex-M7 core include:

  • Six stage, superscalar pipeline delivering 2000 Coremarks at 400MHz in a 40LP process
  • AXI interconnect (supports 64-bit transfer) and fully integrated optional caches for instruction and data allowing efficient access to large external memories and powerful peripherals
  • Tightly coupled memory interfaces for rapid, real-time response
  • Extensive implementation configurability to enable a wide range of cost and performance points to be targeted
  • Optional full instruction and data trace via the Embedded Trace Macrocell enabling greater system visibility
  • An optional safety package and built-in fault detection features contribute toward ASIL D and SIL 3 compliance, meaning Cortex-M7 is the perfect choice for companies targeting safety-related markets including automotive, industrial, transport and medical applications
  • Widest third-party tools, RTOS, middleware support of any architecture, provided by the ARM Connected Community of complementary partner companies.

atmel_SMART_arm_home_banner_980x352

From building automation to smart metering to wearables and other Internet of Things (IoT) applications, a new generation of connected products are increasingly powering our lifestyle. Internet and wireless enabled devices embedded with processors give these once-ordinary “things” new powers. Atmel continues to make it easy for designers to create a more intelligent, more connected world through its Atmel | SMART family. This lineup of ARM-based MCUs drive smart, connected devices in the era of IoT, wireless, and energy efficiency. These solutions include embedded processing and connectivity — as well as software and tools — designed to make it faster and more cost-effective to bring smart products to market. Atmel | SMART MCUs combine powerful 32-bit ARM cores with industry-leading low-power technology and intelligent peripherals.

To learn more about the newly-unveiled, high-performance processor, you can read ARM’s entire press release here.