Tag Archives: 256-bit AES hardware encryption

Atmel and IoT and Crypto, oh my!

One of the companies that is best positioned to supply components into the Internet of Things (IoT) market is Atmel. For the time being most designs will be done using standard components, not doing massive integration on an SoC targeted at a specific market. The biggest issue in the early stage of market development will be working out what the customer wants and so the big premium will be on getting to market early and iterating fast, not premature cost optimization for a market that might not be big enough to support the design/NRE of a custom design.

Latest product in Atmel's SmartConnect family, the SAM W25 module

Here is Atmel’s latest product in the SmartConnect family, the SAM W25 module

Atmel has microcontrollers, literally over 500 different flavors and in two families, the AVR family and a broad selection of ARM microcontrollers ad processors. They have wireless connectivity. They have strong solutions in security.

Indeed last week at Electronica in Germany they announced the latest product in the SmartConnect family, the SAM W25 module. It is the industry’s first fully-integrated FCC-certified Wi-Fi module with a standalone MCU and hardware security from a single source. The module is tiny, not much larger than a penny. The module includes Atmel’s recently-announced 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500, along with an Atmel | SMART SAM D21 ARM Cortex M0+-based MCU and Atmel’s ATECC108A optimized CryptoAuthentication engine with ultra-secure hardware-based key storage for secure connectivity.

Atmel at Electronica 2014

Atmel at Electronica 2014

That last item is a key component for many IoT designs. Security is going to be a big thing and with so many well-publicized breaches of software security, the algorithms, and particularly the keys, are moving quickly into hardware. That component, the ATECC108A, provides state-of-the-art hardware security including a full turnkey Elliptic Curve Digital Signature Algorithm (ECDSA) engine using key sizes of 256 or 283 bits – appropriate for modern security environments without the long computation delay typical of software solutions. Access to the device is through a standard I²C Interface at speeds up to 1Mb/sec. It is compatible with standard Serial EEPROM I²C Interface specifications. Compared to software, the device is:

  • Higher performance (faster encryption)
  • Lower power
  • Much harder to compromise

Atmel has a new white paper out, Integrating the Internet of Things, Necessary Building Blocks for Broad Market Adoption. Depending on whose numbers you believe, there will be 50 billion IoT edge devices connected by 2020.

Edge nodes are becoming integrated into everyone’s life

As it says in the white paper:

On first inspection, the requirements of an IoT edge device appear to be much the same as any other microcontroller (MCU) based development project. You have one or more sensors that are read by an MCU, the data may then be processed locally prior to sending it off to another application or causing another event to occur such as turning on a motor. However, there are decisions to be made regarding how to communicate with these other applications. Wired, wireless, and power line communication (PLC) are the usual options. But, then you have to consider that many IoT devices are going to be battery powered, which means that their power consumption needs to be kept as low as possible to prolong battery life. The complexities deepen when you consider the security implications of a connected device as well. And that’s not just security of data being transferred, but also ensuring your device can’t be cloned and that it does not allow unauthorized applications to run on it.
IoT Design Requirements - Software / Development Tools Ecosystem

IoT design requirements: Software / development tools ecosystem

For almost any application, the building blocks for an IoT edge node are the same:

  • Embedded processing
  • Sensors
  • Connectivity
  • Security
  • And while not really a “building block,” ultra-low power for always-on applications

My view is that the biggest of these issues will be security. After all, even though Atmel has hundreds of different microcontrollers and microprocessors, there are plenty of other suppliers. Same goes for connectivity solutions. But strong cryptographhic solutions implemented in hardware are much less common.

The new IoT white paper is available for download here.

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on November 19, 2014.

Send your hearts fluttering with an ARM-powered wireless platform

taylor-alexandor-Flutter-WirelessA talented Maker by the name of Taylor Alexander, co-founder of Flutter Wireless, has recently gained a large amount of support for the company’s innovative wireless electronics development platform based on Arduino.

No novice to DIY, Taylor has spent a life of hacking, making and transfiguring things to have them do all sorts of different actions than these electronics were originally made to do. At the early age of five, he would break things down and rebuild them to create something entirely different — taking parts from old cameras, stereos and other electronic components, then transforming them into electric cars. From early on, it was evident Taylor was an innovator in the ‘making.’ Now, as everyone has witnessed, there are crowdfunding platforms such as Kickstarter, a startup incubator platform where individuals like Taylor and his co-founders can create value from their extraordinary talents and early fundamental interest.

Not only has Kickstarter offered a new way of doing things, but the platform is reshaping the business and creation cycle for people with talents in technical and creativity. The site has enabled people to get financing, allowing inventors to obtain the investment needed much faster at the early stage of incubation and product development. This money can then be better used to scale faster and prove its concepts early on via social acceptance and crowdfunding with the merits of community and validation.

The powers of the Maker Movement — a fabulous combination of getting the media, bloggers and influencers onboard, riding pre-existing trends, thinking outside the box, conducting frequent demonstrations, all while responding to the ideas and wants of the community. Arguably the most important aspect of the DIY revolution is the validation and acceptance of the community wanting to endorse and witness an idea come to fruition. At an individual level, it’s an exciting and opportunistic time for an inventor or anyone looking to contribute to the landscape of technology or where it is going. These are some of the most compelling reasons as to why Flutter Wireless is able to prove innovative ground, validate their product ideas and infuse the necessary capital to promote more success across communities. As in its Kickstarter’s illustration, the wireless electronics development platform can be communicated from of a large 3,200 ft (1km) usable range. It is packaged with a powerful Atmel ARM-based SAM3S processor, coupled with integrated encryption using Atmel’s ATSHA204 cryptographic chip as the device to secure it’s system.

So, how does this wireless platform work? Well, as the Flutter Wireless site explains:

“Creating Flutter networks are easy, even if it’s just two boards. Specify networks in Arduino code or configure Flutter with our mobile app. Once configured, devices can enter and exit the network seamlessly. This makes it extremely easy to set up a network at home (or anywhere else) where all of your projects can reliably communicate. Flutter is like a second network for your devices.”

In fact, in the landscape of connecting devices and IoT, an individual building out of a wireless project shouldn’t have to be too expensive. “Flutter was built from the ground up with cost in mind, that’s why our boards start at just $20. We’ve worked hard to keep costs as low as possible and deliver you a quality product you can afford to use in as many projects as you’d like,” explains Taylor. flutter-basic-and-flutter-pro-with-atmel-arm-cryptography The startup extraordinaire Taylor has helped further the ecosystem development by leveraging the concepts of “shields” and designing a handful of various protocol shields for Flutter. It’s really focused on individuals who want to get started quickly and build heterogeneous nodes of connected devices on a network. The Flutter boards come shipped with breakout boards and socket headers, combined with the power of connectivity to various protocols (Bluetooth 4.0 Low Energy or conventional Bluetooth 2.1). The Flutter Wireless platform is comprised of the network shield which connects to your home router, creating a bridge between mobile devices (M2M) the Internet and Flutter. For a wireless system, the important factors are range and reliability. According to Flutter Wireless Kickstarter:

We use WiFi everyday, but take a few steps down the driveway and coverage quickly becomes scarce. Flutter is a different kind of wireless system, completely self-contained with over a half-mile range. This allows for a wireless platform without borders, and no longer being chained to a router means your projects are free to follow you out the front door, through the yard, and down the street.”


As previously discussed in Bits & Pieces, the combined Flutter Wireless Development platform is quite comprehensive, considering it’s Kickstarter and crowdfunding origins. Flutter Wireless comes packaged with Atmel’s ATSHA204 to ensure maximum secure storage and protection of encryption keys. Flutter is designed to address security and wireless in a combined package. The platform is comprised of a design, which encompasses a special cryptographic hardware (Atmel’s ATSHA204) that integrates cryptography into every communication layer of the software. In essence, this gives the user ultimate control over who can and cannot communicate with their devices.

The project is given strengths by making it accessible via the Open Source community – ensuring the possibility of enhancing the roadmap by contribution to improve upon Flutter Wireless foundation though the power of the community. Furthermore, Flutter’s wireless concept seamlessly routes messages across a varied number of connected devices to reach their destination. It’s sort of like a lily pad of daisy chaining across many nodes or protocols. With that said, there is a world of potential in the IoT buildup for a number of reasons. Arduino already has a big open-source following. First, this is already proven (via the Maker Movement and Maker Faire) and it’s one of the easiest ways to bridge the physical and digital worlds together. Flutter Wireless can be a node in a larger mesh network, which could be useful for large public projects. (i.e.  Let’s say, a hobbyist or passionate drone user wants to fly his drone to the next town over, keep it connected across RC and mesh networks all within good range and security).

The winning formula:

ARM + Encryption + Easy Development + New IoT-Based Radio + Mesh + Shields + Open Source + Community + Crowdfunding = Thousands of lines of agile code, mesh support, tagging, and various protocol features required to support IoT buildup

Potential applications for Flutter Wireless include:

  • Quadcopters
  • Landscape sensors
  • Agriculture remote sensor installations
  • Remote security implementations
  • Crowdsourcing spectrum analyzers
  • RC hobbyists

Flutter still finds itself under development and continually evolving. The prototypes were designed with the Sparkfun Arduino Pro Mini for rapid development and proof of concept. Out of this ideated adventure, a new generation of boards are in the process being developed with Atmel SMART™ ARM-based SAM3S, a very affordable, versatile and powerful ARM core processor with a capacity for speed and storage space to suit any designer’s connected device project.

More details can be found via the Flutter Wireless website. Devices found within this innovative wireless development platform can be found at Atmel’s product ARM processors page and said security components can be located on Atmel’s Cryptography product page.


Building a $20 wireless platform with the Atmel-powered Flutter

Flutter – which recently tipped up on Kickstarter – can best be described as an open source Atmel-powered wireless platform with a 1000m+ (3200 ft) range. Protected from digital intruders by Atmel’s ATSHA204 which offers 256-bit AES hardware encryption, Flutter makes it easy for DIY Makers to build projects that communicate across a house, neighborhood and beyond.

“Creating Flutter networks is easy, even if it’s just two boards. Specify networks in Arduino code or configure Flutter with our mobile app,” the Flutter crew explained in a Kickstarter post. “Once configured, devices can enter and exit the network seamlessly. This makes it extremely easy to set up a network at home (or anywhere else) where all of your projects can reliably communicate. Flutter is like a second network for your devices.”

In terms of hardware, the Flutter crew is currently offering a range of options for Kickstarter backers, including basic, pro and a number of shields (Bluetooth, breakout board, RC, network and Bluetooth).

Potential applications for Flutter? Mesh networking, quadcopters, sensors (light, water and temperature) sensors, self-diagnosis/spectrum analyzer, as well as RC cars.

As noted above, Flutter is powered by Atmel technology. More specifically, prototype devices were originally designed using the  Arduino Pro Mini board (Sparkfun), although the final version of Flutter will be built around Atmel’s SAM3S, based on a powerful ARM CPU with plenty of speed and storage space.

Interested in learning more about Flutter? You can check out the project’s official Kickstarter page here.