Tag Archives: 2.4GHz RF transceiver

Calling all Makers, visionaries and innovators up for a (IPSO) Challenge!


How do you IPSO? There are many problems in everyday life that can be solved by collecting data thru sensors, or by controlling smart objects based upon inputs from a variety of sources.


Once again, the IPSO Alliance has initiated its annual challenge, whose deadline for proposals is quickly approaching!

ipso2

The IPSO CHALLENGE was launched as a way to show what is possible utilizing the Internet Protocol (IP) and open standards in building the Internet of Things. Enter this global competition by submitting a proposal before July 15 2015 for a working prototype that is innovative, marketable and easy to use.

Just a few weeks ago, I had the opportunity to speak to a potential group of IPSO CHALLENGE participants in Colorado Springs, Colorado. This meetup was created to enable potential participants to learn about the challenge, mingle with like-minded individuals, find team members with the skills needed to implement ideas that are already being considered or to find those with like interests and come up with an innovative project proposal.

As a proud sponsor of the IPSO CHALLENGE 2015, my goal on behalf of Atmel was to describe how our wireless and MCU solutions can be used to form the basis of the hardware and software platforms that should be considered for a number of innovative IP-based challenge entries.

The incentive? Over $17,500 up for grabs in prizes with first taking home $10,000, $5,000 for the runner-up and $2,500 for third. There are many problems in everyday life that can be solved by collecting data thru sensors, or by controlling smart objects based upon inputs from a variety of sources. The Internet of Things and the Internet Protocol are a smart choice as the means to publish and subscribe to  sensor information, and make this available for processing in the cloud, or to deliver this information to mobile devices for viewing or notification anywhere in the world.

One of the development kits that is being promoted for use in the IPSO CHALLENGE is the ATSAMR21-XPRO evaluation board. This kit supports the ATSAMR21 (IEEE 802.15.4-compliant single-chip wireless solution) wireless “system in package” device.

SAMR21_XPRO

The device contains both an ARM Cortex M0+ microcontroller plus the AT86RF233 2.4ghz 802.15.4 radio. This combination makes the perfect solution where a low power wireless sensor or actuator is required ,as an element of the hardware platform needed to implement your CHALLENGE entry.

The SAM R21 is the ideal platform to support a 6LoWPAN wireless mesh network, with sensors that can be used to measure and collect  data, or control outputs, while also having the ability to transfer this information to the cloud, or to any PC or mobile device, that has an internet connection anywhere in the world.

SAM R21 device IO assignments:

SAMR21

Atmel recently released its SmartConnect 6LoWPAN, a wireless stack firmware package that provides an IPV6 6LoWPAN implementation running on the SAM R21 evaluation kit, among a number of other Atmel platforms. Additionally, there are a number of example applications for SmartConnect 6LoWPAN that are provided in the free Atmel Studio 6.2.

AtmelStudio6

The example that I demonstrated during the IPSO meetup was the MQTT (MQ Telemetry Transport) example. MQTT is a publish/ subscribe protocol that allows the SAM R21 SmartConnect 6LoWPAN solution to implement topics like /Atmel/IoT/temperature or  Atmel/IoT/LED and then subscribe to, or publish to these topics while also allowing other devices to also subscribe  or publish to these same topics. This enables all these devices to work together in collecting and processing the content of many distributed sensors.

This is a very simple protocol that needs only a small amount of memory resources, and allows one to create a very effective distributed processing solution, where IP is used to enable communication and data transfer between all of the elements contained within the network.

SmartConnect 6LoWPAN, as with most 6LoWPAN solutions, makes use of the RPL mesh networking routing protocol. This lets these low power SAM R21 (15.4) radios to have the ability to transfer data over longer distances thru the wireless mesh. Because one only has to transfer the data to its nearest neighbor or its parent, in  the network that was formed.

Let’s take a look at a simplistic example of a problem, with a 6LoWPAN wireless mesh network solution: Your children take a school bus to school every morning, and if you could know when the school bus was in the neighborhood, or approaching the nearest stop, life would be a lot easier in inclement weather.

So you gather together a few SAM R21 kits and battery packs, and start to think about a solution.

Since you would need to know where the bus is at some distance from your home, this would eliminate “wired’ solutions, and since you probably would not have access to “mains power” at many of the sensing locations, the solution would require low power battery operated wireless sensors.  As it just so happens, the SAM R21 would make a perfect low power battery operated “wireless” sensor.  The SmartConnect 6LoWPAN wireless mesh network firmware would allow you to cover an extended range, by placing additional routing sensors where needed to keep track of the bus, and to relay or route similar data from other sensors that are too far away by radio, to get all the way back to your home base unit.

Given that you will need access to a fence post, a mailbox or telephone pole on your neighbors property in order to mount your small wireless sensors, you can tell them that they also can access this data to keep track of the school bus, or just about anything in the neighborhood that has a mobile tag  placed on it, whether it’s a young child’s backpack or jacket, a pet’s collar, etc.)

There needs to be one root location where all of the sensor data is transferred to, and this location will act as the  border router ( or dag root ) of the 6LoWPAN network. This is also implemented using the SAM R21 evaluation kit along with an Ethernet 1 XPRO interface board. This border router hardware would be located in your house, and plugged into a spare Ethernet port of the home access point that provides internet service to your home. Future options could also allow using Wi-Fi instead of Ethernet to make the connection to your home Wi-Fi access point.

A mobile sensor/tag will need to be placed on the bus (hopefully you can get permission, to place a small sensor using double sided tape inside the bus, or maybe ask the nice bus driver if he/she would carry it, or have one of the kids that gets on the bus early in the bus route for our neighborhood,  clip the mobile sensor to their backpack or belt .  How and where to place these mobile tag sensors, may actually be one of the most difficult parts to solve for this solution.

Once you have the mobile sensors in place on the bus, kids, dogs,  and cats, now you need to set up the sensor mesh around the neighborhood.

Atmel provides a tool call Atmel Wireless Composer.

WirelessComposer

This free tool  has a very nice feature that allows range testing to be done by one person.  Place one SAM R21 device in a fixed location and then take a battery operated remote node for a walk in your neighborhood.  You can  use this method to determine the typical range that you can achieve and  check potential mounting spots within the neighborhood. This can be used to insure that you can establish reliable wireless communications, and to find the location of where to place the  nearest neighboring node.

Remember to ask permission, before you mount the sensor node on someone else’s property.

As you turn on the remote nodes they will make their presence know to the network, and a route will be discovered back to the root node at your home.

mesh

Once you have established your network, a number of SmartConnect 6LoWPAN Example applications can be used to move the data around the network. By using the MQTT example previously mentioned, units can publish information as to which “mobile” tags are within wireless range of the sensor, thus providing a coarse location system, to notify those that are subscribing to a particular topic, as to the current location of the bus, child, dog or cat.

You can find the Example projects within Atmel Studio 6 as shown below:

ExampleProj

ExampleProj1

The power of  The Internet Protocol and the Cloud in this system is that each individual sensor has its own IPV6 address, and the data collected by the end sensor nodes is packaged into an IP frame, and  transferred thru the wireless network, and then thru the border router to the wired Internet. Then finally to the Cloud without having to convert or change protocols.  Today, there are so many devices that can make use of this data, including devices such as smartphone’s, tablets, laptops, and home automation hubs and gateways, What you can do with this data has endless possibilities.

Applications for these internet connected devices can be created to show the location of the bus or pet on a map, or maybe just send a simple notification of “School bus currently at the Smith family residence”….  Again the possibilities are endless.

Maybe you would also like to turn on your house lights or open your garage door when you approach your house from your car with a sensor mounted in the car. The info in the cloud can be integrated with your home automation system to control the lights and garage door.

Now that you have completed the proof of concept using  the Atmel | SAM R21 evaluation boards, or hopefully now that you have won the IPSO CHALLENGE!, you will want to turn your prototype into a deploy-able product.

Atmel has the solution for you.  SAM R21 “modules” are being developed in a small form factor that will allow the creation of a small battery operated mobile tag or sensor unit, and these modules come with an FCC certification ID, and a proven RF design, to eliminate the challenge, cost, and time required to develop a wireless product from scratch.

Feeling inspired? Submit your idea today before time runs out!

Atmel and IoT and Crypto, oh my!

One of the companies that is best positioned to supply components into the Internet of Things (IoT) market is Atmel. For the time being most designs will be done using standard components, not doing massive integration on an SoC targeted at a specific market. The biggest issue in the early stage of market development will be working out what the customer wants and so the big premium will be on getting to market early and iterating fast, not premature cost optimization for a market that might not be big enough to support the design/NRE of a custom design.

Latest product in Atmel's SmartConnect family, the SAM W25 module

Here is Atmel’s latest product in the SmartConnect family, the SAM W25 module

Atmel has microcontrollers, literally over 500 different flavors and in two families, the AVR family and a broad selection of ARM microcontrollers ad processors. They have wireless connectivity. They have strong solutions in security.

Indeed last week at Electronica in Germany they announced the latest product in the SmartConnect family, the SAM W25 module. It is the industry’s first fully-integrated FCC-certified Wi-Fi module with a standalone MCU and hardware security from a single source. The module is tiny, not much larger than a penny. The module includes Atmel’s recently-announced 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500, along with an Atmel | SMART SAM D21 ARM Cortex M0+-based MCU and Atmel’s ATECC108A optimized CryptoAuthentication engine with ultra-secure hardware-based key storage for secure connectivity.

Atmel at Electronica 2014

Atmel at Electronica 2014

That last item is a key component for many IoT designs. Security is going to be a big thing and with so many well-publicized breaches of software security, the algorithms, and particularly the keys, are moving quickly into hardware. That component, the ATECC108A, provides state-of-the-art hardware security including a full turnkey Elliptic Curve Digital Signature Algorithm (ECDSA) engine using key sizes of 256 or 283 bits – appropriate for modern security environments without the long computation delay typical of software solutions. Access to the device is through a standard I²C Interface at speeds up to 1Mb/sec. It is compatible with standard Serial EEPROM I²C Interface specifications. Compared to software, the device is:

  • Higher performance (faster encryption)
  • Lower power
  • Much harder to compromise

Atmel has a new white paper out, Integrating the Internet of Things, Necessary Building Blocks for Broad Market Adoption. Depending on whose numbers you believe, there will be 50 billion IoT edge devices connected by 2020.

Edge nodes are becoming integrated into everyone’s life

As it says in the white paper:

On first inspection, the requirements of an IoT edge device appear to be much the same as any other microcontroller (MCU) based development project. You have one or more sensors that are read by an MCU, the data may then be processed locally prior to sending it off to another application or causing another event to occur such as turning on a motor. However, there are decisions to be made regarding how to communicate with these other applications. Wired, wireless, and power line communication (PLC) are the usual options. But, then you have to consider that many IoT devices are going to be battery powered, which means that their power consumption needs to be kept as low as possible to prolong battery life. The complexities deepen when you consider the security implications of a connected device as well. And that’s not just security of data being transferred, but also ensuring your device can’t be cloned and that it does not allow unauthorized applications to run on it.
IoT Design Requirements - Software / Development Tools Ecosystem

IoT design requirements: Software / development tools ecosystem

For almost any application, the building blocks for an IoT edge node are the same:

  • Embedded processing
  • Sensors
  • Connectivity
  • Security
  • And while not really a “building block,” ultra-low power for always-on applications

My view is that the biggest of these issues will be security. After all, even though Atmel has hundreds of different microcontrollers and microprocessors, there are plenty of other suppliers. Same goes for connectivity solutions. But strong cryptographhic solutions implemented in hardware are much less common.

The new IoT white paper is available for download here.

This post has been republished with permission from SemiWiki.com, where Paul McLellan is a featured blogger. It first appeared there on November 19, 2014.

Atmel’s ATmega256RFR2 gets Xplained

An IEEE 802.15.4 compliant single chip combines an AVR microcontroller with a 2.4GHz RF transceiver. Simply put, Atmel’s ATmega256RFR2 offers the industry’s highest RF performance for single chip devices with a link budget of 103.5dBm, all while consuming 50% less current than existing products on the market today.

“The ATmega256RFR2 features hardware assisted multiple PAN address filtering (MAF), as well as improved channel masks on CH25 and CH26,” an Atmel engineering rep told Bits & Pieces.

“This allows the device to run full power (1W) on these channels using external power amplifiers, wake-on radio, improved link efficiency and reliability using RX override, 32-bit MAC symbol counter, temperature sensor, automatic transmission modes, 128-bit AES crypto engine, true random number generator, high data rate modes and antenna diversity support.”

To accelerate development with the ATmega256RFR2, Atmel offers the ATmega256RFR2 Xplained Pro, a hardware-based platform that allows engineers to more easily evaluate the device. Supported by Atmel Studio, the kit provides easy access to various ATmega256RFR2 features and explains how best to integrate the device in a customer design. Like other Atmel Xplained Pro evaluation kits, the ATmega256RFR2 Xplained Pro is capable of significantly expanding its original functionality by linking to additional Xplained Pro extension kits.

For a complete and ready to go package, the ATmega256RFR2-XSTK starter kit includes the Atmel I/O1 Xplained Pro, OLED1 Xplained Pro and PROTO1 Xplained Pro extension boards.

Aside from the ATmega256RFR2 microcontroller (MCU), key ATmega256RFR2 Xplained Pro specs include:

  • One mechanical reset button
  • One mechanical user pushbutton (wake-up, bootloader entry or general purpose)
  • One user yellow LED
  • 32.768kHz crystal
  • 16MHz crystal
  • 5 Xplained Pro extension headers (2 headers are duplicates)
  • Antenna diversity: Ceramic RF antenna and SMA connector for external antenna
  • Temperature sensor
  • Embedded debugger
  • Auto-ID for board identification in Atmel Studio 6.1
  • One yellow status LED
  • One green board power LED
  • Symbolic debug of complex data types including scope information
  • Programming
  • Data Gateway Interface: SPI, TWI, 4 GPIOs
  • Virtual COM port (CDC)
  • USB powered
  • Supported with application examples in Atmel Software Framework

The ATmega256RFR2 Xplained Pro can be purchased here from Atmel’s official store.