Category Archives: Product News

LattePanda is a $70 Windows 10 mini computer


This single-board computer comes pre-installed with Windows 10 and an Arduino-compatible coprocessor. 


Microcomputers aren’t only getting smaller, they’re getting a whole heck of a lot cheaper, too. Just in recent months alone, both the $9 C.H.I.P. and the $5 Raspberry Pi Zero have generated quite a bit of buzz amongst the Maker crowd. However, getting a single-board that runs Windows is a bit more difficult and requires you to dig a little deeper into your pockets. That was until now, at least.

2

Meet the LattePandaa $69 board equipped with an Intel Atom x5-Z8300 Cherry Trail processor, 2GB of RAM, 32GB of storage, and yes, a preloaded Windows 10 operating system. What’s more, there’s a pricier ($130) LattePanda Enhanced that boasts the same processor and design along with 4GB of RAM and 64GB of storage.

LattePanda is the perfect portable computing device, enabling you to do typical PC things like create documents with Microsoft Office, play HD videos and run Windows apps, all on the go. Since it’s pre-installed with Windows 10, each board features tools including Visual Studio, NodeJS, Java and Processing. Plus, the microcomputer supports a number of accessories, ranging from sensors and joysticks to Leap Motion controllers and Kinect.

b8510ea8bc73a2f0ce44184d45ee9e3c_original

Both versions pack HDMI, USB 3.0 and two USB 2.0 ports, built-in Wi-Fi and Bluetooth, a microSD card slot, an audio jack, Ethernet, as well as microUSB for power.

And here’s the part that really fascinates us: The board, which measures just 3.5” by 2.8” in size, includes an ATmega32U4 coprocessor for Arduino compatibility, serial ports and a touchscreen connector.

“Whether you are a Windows developer, an IoT developer, a hardware DIYer, an interactive designer, a robotics whizz or a Maker, LattePanda can aid your creative process,” its team writes.

LattePanda_Block_Diagram

Among the example use cases provided are camera-enabled robots, security monitoring system, cloud-connected IoT devices and real-time data research projects. With onboard Ei-Fi, Bluetooth 4.0 and Ethernet connectivity, data transmission can be seamless.

Ready to say goodbye to your bulky laptop? Not only can it serve as a fully-functional Windows PC, it also offers serial connectors, GPIO pins and Arduino support. Head over to its Kickstarter campaign, where the LattePanda crew is seeking $158,858. Delivery is slated for March 2016.

The Stepoko is an ATmega328P powered CNC board


The SparkFun Stepoko is an Arduino-compatible, three-axis control board that runs grbl.


SparkFun has just unveiled an entire lineup of CNC products, including a brand new board that can be found at the heart a sleek and bright red desktop router.

13155-01a

 

The SparkFun Stepoko is an Arduino-compatible, three-axis controller that runs grbl software and is capable of connecting to your computer to accept stepper motor commands. The board’s design and firmware are completely open source and works with Java-based cross platform G-Code sending application to translate commands.

“By just looking at the pictures, this board may look daunting but the simplest installation of the Stepoko consists of just plugging the stepper motors in, connecting it to power and to your computer! To top it off, we’ve designed the SparkFun Stepoko to fit and be secured inside of our Big Red Box as an effective enclosure option after a bit of milling to support the boards connectors and heatsink,” the team writes.

The board itself is broken down into two “hemispheres.” Stepoko’s right side is tasked with supplying power and system control, courtesy of the ATmega328P at its core. SparkFun has broken out all of the pins that are associated with the MCU and power supplies, and has included chart in silkscreen on the back of the board that matches the grbl pin functions to the Arduino pin naming convention. According to its creators, applying 12-30VDC to either the barrel jack or screw terminals (not both) and the Stepoko can supply up to 2.0A. Additionally, there’s a rail of screw terminals that function as limit, probe and e-stop connections.

CUSzHNEUYAI_RFi

Meanwhile, the board’s left side features three of the stepper motor drivers for the Stepoko. Each of the three-axis drivers are managed by a DRV8811 IC, which communicates with the ATmega328P via digital control signals that are able to set direction, enable the motor and enact a step. Internally, it has a state machine that matches the states of each motor necessary to get it to perform. Modifying the microstepping control switches on each driver provide you to finely tune each array to your specified likeness. All the work that each stepper motor driver provides is contributed by the grbl software that comes pre-installed with each Stepoko.

“Whether you are using the SparkFun Shapeoko on your own rig or on one our Shapeoko CNC Machine platforms you should be able to utilize this board to its full functionality without breaking a sweat,” the crew adds.

Shapeoko-01

But that’s not all. The Stepoko can be found at the heart of the Shapeoko 3 — a heavy duty desktop CNC machine capable of routing designs in a variety of materials like MDF, wood and even thin aluminum. This device was brought to life in collaboration with Carbide 3D. Intrigued? Head over to SparkFun’s page to get your hands on the Arduino-compatible board and a mill our own.

Atmel brings Wi-Fi connectivity to the WeChat IoT Platform


Leveraging the Atmel | SMART SAM W25, the WeChat IoT Platform supports the latest Airkiss 2.0 protocol for Wi-Fi provisioning and service discovery and allows developers to seamlessly connect to the cloud.


We love social media here at Atmel, so much so that we’re collaborating with WeChat on their latest IoT platform. The popular messaging and calling app is employing the Atmel | SMART SAM W25 module along with an ATECC508 CryptoAuthentication engine for secure connectivity.

Wecj

The WeChat IoT Platform delivers cloud services for seamless accessibility to the Internet ensuring every ‘thing’ is smartly connected and supports the recently launched Airkiss 2.0 protocol for Wi-Fi provisioning and service discovery. This new platform — which is currently available in China — provides a complete edge node-to-cloud solution from a single vendor for developers looking to build next-generation apps for tomorrow’s connected devices. Consumers can now instantly link to their IoT gadgets and easily access information via the Weixin mobile app, WeChat’s sister product.

For those who may not know, the SAM W25 module is part of the Atmel SmartConnect family and includes the 2.4GHz IEEE 802.11 b/g/n Wi-Fi WINC1500, as well as an Atmel | SMART SAM D21 ARM Cortex-M0+-based MCU and an ATECC508 optimized CryptoAuthentication engine. The unit is ready-to-use and FCC-certified delivering a simple, plug-and-play solution.

SAMW

“The IoT is the next big technology wave for the mobile, home automation, smart city, automotive and industrial markets and requires developers to now consider the complete edge-node-to-cloud communication,” explains Pierre Roux, Atmel Director of Wireless Solutions. “Weixin is one of the leading providers of IoT cloud services and a fully integrated provider with a host of capabilities ranging from simple texting to payment, portal and more. IoT developers and manufacturers using the Atmel SmartConnect SAM W25 evaluation board on the Weixin IoT Platform will have access to one of the largest user communities currently available for cloud services. Our collaboration with Weixin is just the beginning of a long-term collaboration as it is transitioning to IoT.”

Weixin originally began as a messaging app and has since been morphing into an all-in-one platform, which offers users a wide range of services from hailing a taxi, to shopping, to paying utility bills. As of the Q3 2015, the combined monthly active users’ accounts for Weixin and WeChat reached 650 million. Are you ready to connect your SAM W25 to the biggest user community in the world? Get started here!

Step up your Arduino game with the SparkFun SAM D21 Dev Breakout


The SparkFun SAM D21 Dev Breakout is an Arduino-sized breakout board for the Atmel ATSAMD21G18.


If you’re ready to step your Arduino game up from 8-bit MCUs, the newly-unveiled SparkFun SAM D21 Dev Breakout is a great way to start. The Arduino-sized breakout for the Atmel | SMART ATSAMD21G18 — a 32-bit ARM Cortex-M0+ processor with 256KB of Flash, 32KB SRAM and an operating speed of up to 48MHz — provides you with an Arduino hardware option that solves the problems of low storage limits and dynamic memory stack overflows that have plagued the previous iterations of the Arduino family. Even better, the SparkFun SAM D21 Dev Breakout is fully supported in the Arduino IDE and libraries for the Arduino Zero.

13672-04

The SparkFun SAM D21 Dev Breakout has been equipped with a USB interface for programming and power, surrounded with an RTC crystal, and a 600mA 3.3V regulator. By utilizing the Pro R3’s extra PCB real-estate, SparkFun has been able to leave room for a few extra GPIO pins and an integrated LiPo charger. To power this board, simply plug it into a USB port on your computer via its micro-B port.

Not near a USB port? Don’t fret, the SparkFun SAM D21 Dev Breakout is also equipped with a LiPo Battery connector and unpopluated supply input to solder on your own PTH Barrel Jack. If you’ve used any Arduino before, this pinout shouldn’t surprise you – the layout meets the Arduino 1.0 footprint standard, including a separate SPI header and additional I2C header.

13672-01

One of the most unique features of the SAM D21 is SERCOM — a set of six configurable serial interfaces that can be turned into either a UART, I2C master, I2C slave, SPI master, or SPI slave. Each SERCOM provides for a lot of flexibility: the ports can be multiplexed, giving you a choice of which task each pin is assigned.

SparkFun has made a SAM D21 Mini/Dev Breakout Hookup Guide available online, which includes step by step instructions of how to connect your board as well as a few circuit examples to test out. Intrigued? Head over to its official page here to get yours!

Introducing the first SoC evaluation solution based on the ARM mbed IoT Platform


Atmel is unveiling an ARM mbed evaluation platform for Internet of Things applications at ARM TechCon 2015.


What better way to kick off ARM TechCon than with some big news? Atmel has unveiled the first system-on-chip hardware evaluation solution based on the ARM mbed IoT Platform.

best-free-virus-scan-software-for-smartphones

Powered by the Atmel | SMART SAM R21 SoC, the new solution runs on the mbed IoT Device Platform — a platform that provides the operating system, cloud services, tools and developer ecosystem that makes the deployment of commercial, standards-based IoT solutions possible at any scale. The R21 is an ideal solution for the rapidly growing Internet of Things market.

Atmel is a leading supplier of IoT solutions, and the company’s SmartConnect wireless solutions are the perfect companion for the mbed networking software to power next-generation smart, connected devices. Those who’ll be heading to ARM TechCon will be able to get a firsthand look at the newly-unveiled hardware evaluation platform powered by Atmel’s SAM R21 wireless solution inside the mbed Zone (booth #512, pedestal 1). What’s more, Atmel will also be expanding mbed OS support to the Atmel SmartConnect SAMW25 Wi-Fi modules and Bluetooth Low Energy platform by the end of the year.

SAMW25_Xplained_Pro_Angled

“High-quality, well integrated software is key to our customers’ success for developing complex IoT designs requiring several layers of standards-based protocols to deliver secure communications,” explained Steve Pancoast, Atmel Vice President of Software Development, Applications and Tools. “By delivering a robust hardware platform based on our Atmel | SMART MCUs and SmartConnect wireless solutions combined with the ARM mbed OS, customers have all the necessary requirements to quickly bring their IoT projects to market. Our mission is to deliver a complete software, hardware and tools ecosystem so our customers can build compelling next-generation products for the rapidly expanding IoT market.”

Launched in 2014, the mbed IoT Device Platform combines client and server software, consisting of a lightweight OS for client devices (mbed OS), and the matching cloud server software to interact with it (mbed Device Server). Both the mbed OS and mbed Device Server are intended to be building blocks for finished products so developers can take the mbed components and build the application logic on top of a solid software foundation provided by ARM.

“IoT developers operate at pace and they need a breadth of easily-available hardware and software technologies that work in harmony so they can bring products to market as quickly and easily as possible,” said Zach Shelby, ARM Vice President of Marketing, IoT Business. “Atmel solutions range from embedded processing to security and include highly-integrated wireless technology solutions for Wi-Fi, Bluetooth and 802.15.4. By utilizing mbed IoT Device Platform technologies Atmel is well positioned to deliver easy-to-use hardware evaluation platforms that include processing, security and communication protocols for next-generation systems.”

thingsquare2

For those unfamiliar with the Atmel | SMART SAM R21, the low-power MCUs are based on the 32-bit ARM Cortex-M0+ processor integrating an ultra-low-power 2.4GHz ISM band transceiver. The devices are available in 32- and 48-pin packages with up to 256KB Flash, 32KB of SRAM, and operate at a maximum frequency of 48MHz, reaching 2.14 Coremark/MHz. Atmel SAMR21 devices include intelligent and flexible peripherals, Atmel Event System for inter-peripheral signaling, and support for capacitive touch button, slider and wheel user interfaces.

If you’ll be joining us in the Santa Clara Convention Center, then come check it out inside the mbed Zone. Otherwise, stay tuned as we bring you more information!

Develop secure IoT apps with the Atmel Certified-ID platform


The Atmel Certified-ID security platform prevents unauthorized reconfiguration of an edge node to access protected resources on the network.


Atmel has announced a comprehensive security platform that enables businesses of all sizes to assign certified and trusted identities to devices joining the secure Internet of Things. The Atmel Certified-ID security platform prevents unauthorized reconfiguration of an edge node to access protected resources on the network. This new platform is available on the Atmel SmartConnect Wi-Fi, Bluetooth, Bluetooth Smart and ZigBee solutions that connect directly to Atmel Cloud Partners, providing a secure turnkey solution for IoT edge node-to-cloud connection.

Sec

The Atmel Certified-ID platform delivers a distributed key provisioning solution, leveraging internal key generation capabilities of the ATECC508A CryptoAuthentication device, without invoking large scale infrastructure and logistics costs. This platform even allows developers to create certified and trusted identities to any device before joining an IoT network.

With billions of devices anticipated by 2020 in the rapidly growing IoT market, security is a critical element to ensuring devices can safely and conveniently access protected assets through the Internet. Today, secure identities are commonly created through a centralized approach where IoT device keys and certificates are generated offline and managed in secure databases in Hardware Security Modules (HSM) to protect the keys. These keys are then programmed into the IoT devices by connecting the HSM to automation equipment during device manufacturing. This approach is indispensable in large deployments consisting of millions of devices. It can also entail significant upfront costs in infrastructure and logistics which must be amortized over a large number of devices for cost effectiveness.

By utilizing the unique internal key generation capabilities of ATECC508A device, the recently-unveiled platform enables decentralized secure key generation, making way for distributed IoT device provisioning regardless of scale. This method eliminates the upfront costs of the provisioning infrastructure which can pose a significant barrier in deploying devices in smaller scales. On top of that, developers will be able to create secure IoT devices compatible with partner cloud services and to securely join ecosystems.

Atmel is currently working with several cloud service companies, including Proximetry and Exosite, on the Certified-ID platform. These collaborations will give developers a wide range of ecosystem partners to choose from for a secure connection between the edge nodes and the IoT. Other partners will be announced as they are integrated in the Certified-ID platform.

“As a leader in the security space with a track record of over two decades, enabling secure networks of all sizes is our mission,” said Nuri Dagdeviren, Atmel Vice President and General Manager of Secure Products Group. “Streamlining secure processes and simplifying deployment of real world secure networks will be key to unlocking the potential and enabling rapid growth of IoT. We will continue delivering industry-leading solutions in security, a critical element in enabling billions of ‘things’ to be connected to the cloud.”

banner_AT88CKECCROOT-SIGNER

Atmel now offers security provisioning tool kits to enable independent provisioning for pilot programs or production runs when used in conjunction with the ATECC508A ICs. These devices are pre-provisioned with internally generated unique keys, associated certificates, and certification-ready authentication once it is connected to an IoT ecosystem.

Developers will need two kits to securely provision their gadgets: the AT88CKECCROOT tool kit, a ‘master template’ that creates and manages certificate root of trust in any ecosystem, and the AT88CKECCSIGNER tool kit, a production kit that enables partners to provision IoT devices.

The AT88CKECCSIGNER kit lets designers and manufacturers generate tamper-resistant keys and security certifications requiring hardware security in their IoT applications. These keys provide the level of trust demanded by network operators and allows system design houses to provision prototypes in-house—saving designers overall investment costs.

The tool kits also include an easy-to-use graphical user interface that allow everyone to seamlessly provision their IoT devices with secure keys and certificates without special expertise. With distributed provisioning, developers are not required to use expensive HSM for key management and certificate acquisition fees.

In addition to secure IoT provisioning, the new Certified-ID platform provides high-quality random number generation to guarantee a diverse set of public and private keys. It delivers solutions to a variety of IoT security needs including node anti-cloning protection, data confidentiality, secure boot, and secure firmware upgrades over-the-air. The tamper resistance built into the ATECC508A device continues to provide the desired protection even when the device is under physical attack.

Ready for the Internet of Trusted Things? Both the Atmel AT88CKECCROOT and AT88CKECCSIGNER are available today.

New TomTom Spark GPS fitness watch is powered by Atmel


TomTom Spark GPS fitness watch features music, GPS, 24/7 tracking, extended battery life and robust capacitive touch buttons.


A few weeks ago, TomTom unveiled its brand-spanking new Spark GPS fitness watch lineup at IFA 2015. Most notably, one of the company’s biggest pushes with their latest lineup is music, boasting 3GB of memory (enough for 500 or so songs) which allows wearers to store their favorite workout tunes and play them on a pair of Bluetooth headsets.

TomTom_image

Not only that, the Spark features a completely redesigned look and feel for ultra sleekness and optimal comfort, in comparison to previous devices. The watch offers a larger and enhanced screen, as well as a variety of colors and strap options.

Putting the music aside, the Spark does just about everything else you’d expect an all-day monitor to do. It counts your steps, tallies calories burned and even captures activities in various modes — whether that’s riding a bike, running the treadmill, jogging a long distance or simply doing some bench presses at the gym. But unlike every other wrist-adorned unit, this one actually even shows you totals towards a weekly progress level.

The Spark family ranges from a simple barebones GPS and sleep/activity-tracking model to one with all the bells and whistles. Additionally, the top-tier watch is even equipped with a heart rate sensor that rivals the likes of other big names in the market. And it should go without saying, each of the wearables include 24/7 GPS tracking.

spark_2

Inside is where the magic happens, though. The TomTom Spark GPS fitness watch is powered by an Atmel | SMART ARM Cortex-M7-based MCU along with the mighty tinyAVR44A. Plus, the recently-revealed gadget employs Atmel’s QTouch library software to control the sleek touch interface in the 8-bit MCU. The combination of these ultra-low-power processors extends the battery life of the wearable to up to 10 hours in GPS mode.

“We are thrilled that TomTom has selected our ultra-low-power ARM- and AVR-based MCUs to power the main processing unit and touch interface,” says Alfredo Vadillo, Atmel Vice President of ARM-based MCUs. “We look forward to supporting this project and to collaborating on future designs.”

Intrigued? Not only should you head over to TomTom Spark’s official page to learn more, you may want to check out this exhaustive review from DC Rainmaker as well.

Certified safety software libraries now available for Atmel | SMART MCUs


Atmel is collaborating with HiTex and Pervasive Displays to release software libraries including the IEC 60730 Class B safety standard and e-paper drivers.


Atmel has just unveiled additional ease-of-use capabilities for the ultra-low power Atmel | SMART ARM Cortex-M0+ based MCUs for household appliances, industrial and human interface device applications. In an effort to continue delivering rich features to its growing portfolio, Atmel is collaborating with HiTex and Pervasive Displays to release software libraries including the IEC 60730 Class B safety standard and e-paper drivers, respectively, to support Atmel | SMART MCUs.

img_5037

The Cortex-M0+ based family featuring a peripheral touch controller is currently designed into a wide variety of applications in tier 1 white goods manufacturer, and is ideal for a number of household appliances for touch-enabled button, wheel and slider capabilities. As a safety requirement for household appliances, the IEC 60730 safely standard—a requirement in Europe since 2007—was recently mandated in the US. Hitex has developed an IEC 60730 Class B library for Atmel | SMART MCUs. The library comes with excellent documentation, a formal certificate from VDE and can be downloaded from the Hitex website.

“Safety and time-to-market are two critical elements for appliance developers,” explains Andreas Eieland, Atmel Director of MCU Marketing. “The implementation of capacitive touch sensing for the user interface and MCUs in next-generation appliances, along with the availability of VDE certified Class B software libraries, allows manufacturers to get their products quickly to market with all the safely requirements.”

With power consumption being a primary driver for battery-powered retail and commercial markets, manufacturers are turning to e-paper for displaying pricing and information for their products. When paired with an ultra-low-power Atmel | SMART MCU and wireless transceiver, e-paper is the perfect interface for IoT apps running on coin cells or energy harvesting. To enable manufacturers to easily implement e-paper displays, Pervasive Displays has developed e-paper software drivers to support the Atmel | SMART SAM D and SAM L product families.

“Manufacturers of next generation battery-powered application are demanding lower power consumption and improved performance. E-paper addresses those needs with the lowest power display in the industry,” adds Charming Su, Pervasive Displays Technical Director. “With the combination of the Atmel | SMART MCUs and our free software drivers, e-paper manufacturers can be confident that their implementation is straight forward and power efficient. Our collaboration with Atmel enables manufacturers to deliver ultra-low power, next-generation e-paper displays.”

ARM Keil ecosystem integrates the Atmel SAM ESV7


Keil is part of the ARM wide ecosystem, enabling developers to speed up system release to the market. 


Even the best System-on-Chip (SoC) is useless without software, as well as the best designed S/W needs H/W to flourish. The “old” embedded world has exploded into many emergent markets like the  IoT, wearables, and even automotive, which is no more restricted to motor control or airbags as innovative products from entertainment to ADAS are being developed. What is the common denominator with these emergent products? Each of these require more software functionality and fast memory algorithm with deterministic code execution, and consequently innovative hardware to support these requirements, such as the ARM Cortex-M7-based Atmel | SMART SAM ESV7.

AtmelChipLib Overview

ARM has released a complete software development environment for a range of ARM Cortex-M based MCU devices: Keil MDK. Keil is part of ARM wide ecosystem, enabling developers to speed up system release to the market. MDK includes the µVision IDE/Debugger and ARM C/C++ Compiler, along with the essential middleware components and software packs. If you’re familiar with Run-Time Environment stacked description, you’ll recognize the various stacks. Let’s focus on “CMSIS-Driver”. CMSIS is the standard software framework for Cortex-M MCUs, extending the SAM-ESV7 Chip Library with standardized drivers for middleware and generic component interfaces.

By definition, an MCU is designed to address multiple applications and the SAM ESV7 is dedicated to support performance demanding and DSP intensive systems. Thanks to its 300MHz clock, SAM ESV7 delivers up to 640 DMIPS and its DSP performance is double that available in the Cortex-M4. A double-precision floating-point unit and a double-issue instruction pipeline further position the Cortex-M7 for speed.

Atmel Cortex M7 based Dev board

Let’s review some of these applications where SAM ESV7 is the best choice…

Finger Printer Module

The goal is to provide human bio authentication module for office or house access control. The key design requirements are:

  • +300 MHz CPU performance to process recognition algorithms
  • Image sensor interface to read raw finger image data from finger sensor array
  • Low cost and smaller module size
  • Flash/memory to reduce BOM cost and module size
  • Memory interface to expand model with memory extension just in case.

The requirement for superior performance and an image sensor interface can be seen as essential needs, but which will make the difference will be to offer both cheaper BOM cost and smaller module size than the competitor? The SAM S70 integrates up to 2MB embedded Flash, which is twice more than the direct competitor and may allow reducing BOM and module size.

SAM S70 Finger Print

Automotive Radio System

Every cent counts in automotive design, and OEMs prefer using a MCU rather than MPU, at first for cost reasons. Building an attractive radio for tomorrow’s car requires developing very performing DSP algorithms. Such algorithms used to be developed on expansive DSP standard part, leading to large module size, including external Flash and MCU leading obviously to a heavy BOM. In a 65nm embedded Flash process device, the Cortex-M7 can achieve a 1500 CoreMark score while running at 300 MHz, and its DSP performance is double that available in the Cortex-M4. This DSP power can be used to manage eight channels of speaker processing, including six stages of biquads, delay, scaler, limiter and mute functions. The SAM S71 workload is only 63% of the CPU, leaving enough room to support Ethernet AVB stack — very popular in automotive.

One of the secret sauces of the Cortex-M7 architecture is to provide a way to bypass the standard execution mechanism using “tightly coupled memories,” or TCM. There is an excellent white paper describing TCM implementation in the SAM S70/E70 series, entitled “Run Blazingly Fast Algorithms with Cortex-M7 Tightly Coupled Memories” from Lionel Perdigon and Jacko Wilbrink, which you can find here.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger as well as one of the four founding members of the site. This blog first appeared on SemiWiki on October 23, 2015.

Sun-believable! Sol Chip powers the IoT 24/7 with solar energy


Sol Chip’s IoT platform provides low-power communication module, with self-sustaining solar energy technology.


The Internet of Things calls for a lot of wireless devices, which in turn require wireless connection and power in order to operate. Typically speaking, wireless gadgetry is powered predominantly by batteries with limited life expectancy that inevitably deplete over time and need replacement. If we can get these devices to communicate with each other without the inconvenience of wires and installations, why can’t we do the same when it comes to powering them? Luckily, one company has already thought of a solution.

A1

Meet Sol Chip — an Israeli startup that specializes in energy harvesting and communication platforms solutions for the IoT — who has created a power management unit that yields light energy to supply continuous and sustainable energy and communication of sensors’ data. The Sol Chip Com (SCC-M433) is a new autonomous monitoring platform that will eliminate the need to carry out maintenance procedures performed on battery-operated systems. Operable in sunlight and low-light environments, the batteries are a result of the cross pollination of solar cell and microchip technologies.

Not surprisingly, Sol Chip is driven by Atmel’s extremely low-powered MCUs (ATXmega32D3 and ATXmega32E5) in each of its various products. Specifically, the SCC-M433 features a solar battery with more than 10 years of maintenance-free operation, a network of wireless mesh nodes for coverage ranging up to 1,500 meters and 433Mdz radio frequency for outdoor applications.

Based on a patented IP, SCC-M433 integrates all required components into a single unit to operate 24 hours a day during summer and winter. Once an analog or digital sensor is connected the SCC-M433, data can be transferred to the cloud, allowing a user to keep tabs on and analyze the information. Sol Chip’s technology utilizes a low-cost manufacturing flow, thereby increasing overall efficiency while reducing operation costs by 60%.

Sol-Chip-Solar-Battery-1

“Extreme low-power microcontrollers enable us to design new cutting edge technology and be the leaders in our industry,” explains Dr. Shani Keysar, Sol Chip’s founder and CEO.

The product design was initially derived from a smart irrigation system that enabled growers to achieve higher yields, while diminishing the amount of water, cutting resource consumption and decreasing costs. Sol Chip’s more recent technology can easily fit other use cases where wireless mesh network is necessary, such as smart cities, structural health monitoring and asset tracking.

Intrigued? You can check out Sol Chip’s solar batteries and various applications here.