Category Archives: 3D Printing

This 3D printer on wheels wants to fix potholes


Addibots are self-driving and remote-controlled 3D printers that can smooth over roads… or skating ponds at the very least.


When it comes to 3D printing, who says you can’t think (and create) outside the box? Clearly not Robert Flitsch, a mechanical engineer and Harvard graduate who recently founded his own New York-based startup Addibots.  

CEO Robert Flitsch with Ice Resurfacing Addibot

An Addibot is a four-wheeled robot that can be either autonomous or remote-controlled, and holds an array of printheads on its undercarriage that enable it to 3D print with various materials as it drives.

Breaking free from the restraints of conventional 3D printing, Addibot can move its printing components to any desired location and produce items of any size. Unlike most machines where an object is built inside the print area and then removed for use, this platform can turn any surface into a workspace.

Text Printing Addibot

“A central limitation of current 3D printing methods is the fact that they operate inside a workspace of finite dimensions,” Flitsch explains. “For many household 3D printers, these dimensions are merely a few inches in each direction. For these printers, larger objects can only be manufactured with larger printers, making the fabrication of sizable industrial products either incredibly expensive (due to astronomical equipment costs) or downright impossible (for objects, like buildings or bridge trusses, just too large for a printer of this type).”

Flitsch’s first prototypes were equipped with inkjet cartridges, designed to show off the Addibot’s concept in 2D. And since water possesses similar fluid characteristics to ink, the engineer  — who also happens to be a lifelong hockey player — turned his attention to repurposing the bot as an ice resurfacing tool for skated-upon rinks. Like a mini Zamboni, the Addibot poured water that was cooled just above its freezing point into the slices and chips made by the blades, which would freeze on contact with the surface.

Ice Resurfacing Addibot

While the team notes that there are endless possibilities for Addibots, they are initially focusing their efforts on road repair and construction. They are working towards a new distribution array that can use asphalt materials, with hopes of fixing cracks, large potholes and eventually the resurfacing of our roadways altogether. The robot’s ability to streamline this process could potentially help public works departments and municipalities across the nation meet the massive demand for improved streets.

The robot operates much like any other 3D printer, just scaled down. Housed inside its chassis are multiple nozzles that lay down materials layer by layer, as needed. Impressively, the technology may even be able to one day “print” sensors into roads, which would be used for communication by self-driving vehicles.

“All the storage for material, all the chemical processing could be done on board the Addibot,” Flitsch told Popular Science. “Tar materials, which have to be kept at a high temperature, can be done in a tank with a constant heat source added to it. Power sources could be various kinds, depending on the size of the robot.”

Intrigued? Head over to its page to learn more, or see it in action above!

Explore the world of robotics with this 3D-printed, Arduino-driven hand


Hobby Hand is a 3D-printed robotic hand that mimics natural movement and can be easily controlled by anyone.


The brainchild of Iowa City-based Biomechanical Robotics Group, the Hobby Hand is a 3D-printed robotic hand capable of mimicking the natural movements of its human overlord.

photo-original

The modular platform is ideal for hobbyists, tinkerers, Makers and robotics enthusiasts, as well as educators looking to introduce students to programming, analog sensors and hardware. In terms of its design, the Hobby Hand consists of five servo motors for lateral movement and five additional servos responsible for bending. A top piece mounts the hand onto the servo motor frame, which guides the flexion cables to the servos.

An Arduino Mega (ATmega2560) and servo shield are tucked away inside the base, which acts as the control center for the Hobby Hand. This is also where you’ll find all of the motors, sensors and additional peripherals attached to the board. The electronics are driven by a 5V 4A power supply.

Hand1

Each finger has a total of four bands that saddle the center line to maximize the stability of each digit. These elastics are tasked with bringing the finger back to its original position after closing. Additionally, the team has devised an analog board of potentiometers that handle flexion and side-to-side movement.

What’s more, the Hobby Hand even comes with a mini breadboard, which is connected to the servo motor frame. This enables Makers to add extra analog sensors (light, sound, muscle and others), LEDs and speakers to their project.

Hand2

The hand itself ships in one of two forms: either as a fully-assembled, out-of-the-box product or as a DIY kit with a step-by-step instruction manual. The Biomechanical Robotics Group crew advises that the latter option requires some basic soldering know-how and a few common tools. Intrigued? Head over to its Kickstarter campaign, where the team is currently seeking $30,000. Delivery is slated for June 2016.

Maker builds a $20 mouth-operated mouse


This DIY mouthpiece allows those with disabilities to easily surf the web. 


Out of more than 170 submissions, Maker Tobias Wirtl’s Mouth Operated Mouse has been named the winning entry in Thingiverse’s Assistive Technology Challenge.

IMG_8259_preview_featured

After reading about difficulties those with disabilities face in accessing new technologies, Wirtl wanted to create an affordable and easily accessible device that could enable more people without the use of their arms and hands to navigate the Internet. Even better, the mouth-operated piece can be built for $20 using a 3D-printed case and off-the-shelf components — a mere fraction of the cost of commercial solutions on the market today.

“There are many new technologies that people with disabilities can’t access and in my opinion everyone should be able to benefit from today’s media, especially the Internet,” Wirtl explains.

IMG_8178_1

The mouth-operated mouse moves the cursor by using a mouthpiece, which works like a joystick. Pushing the mouthpiece towards the case operates the right mouse button, while the left button is emulated by a $5 e-cigarette sensor that recognizes when the user sucks air through it. The system is all controlled by an Arduino Pro Micro (ATmega32U4) and can be connected to virtually any PC via USB.

This winning design follows in the footsteps of several other Maker projects, including Hackaday Prize champion Eyedrivomatic, that could ultimately change the lives of others.

This DIY BB-8 will have you at beep


Just in time for The Force Awakens, one Maker has built his own 3D-printed, remote-controlled BB-8.


Although we’re just days away from the release of Star Wars: The Force Awakens, it’s safe to say that BB-8 has already become the breakout star of the film. Since first laying eyes on the soccer ball-sized droid in the trailer, it has seemingly captured the hearts of everyone — whether a fan or not.

thumbnail3

Instead of rushing to stores and purchasing a mini BB-8 of their own, several Makers have opted to build their own cute metallic orange ball with a beeping head. Take software engineer Jean-René Bédard, for example. His version is entirely 3D-printed, hand-painted and powered by a simple ATmega328 based, Arduino-compatible robotic platform.

The Maker designed his BB-8 in SketchUp and then spit him out using two Dremel Idea Builder 3D printers — a process that took roughly 50 hours to completed and called for over 650 feet (200 meters) of PLA filament.

Although it may not roll like the one in the Hollywood flick, Bédard’s bot can balance itself on a pair of wheels and be controlled with a basic RF remote. It is equipped with authentic sounds and several Adafruit LEDs to give it the full effect along with its orange and silver nail polish exterior. What’s more, the beeping BB-8’s head moves via a micro servo actuated by the Arduino.

This project will surely awaken your Maker forces. See for yourself below!

 

Only a true Maker has a Christmas tree like this


Zach Burhop’s Trinket-powered piece is complete with 3D-printed ornaments and a custom LED star.


Two years later and Zach Burhop’s Christmas tree is still spreading some holiday cheer. Back in 2013, the industrial designer by day and Maker by night may have built one of the most geeked-out decorations of all-time. And with December 25th quickly approaching, we figured what better time to reminisce about the amazing tinyAVR-powered piece — complete with 3D-printed ornaments and a custom LED star.

Tree1

“I was very disappointed in what you can buy — mostly just classical decorations. I saw the ornaments and had started playing around with the LEDs and thought this would be an awesome mashup,” Burhop explained.

In terms of electronics, the engineer (who happens to be a huge Adafruit fan) had some NeoPixels and Trinkets (ATtiny85) lying around. A two-meter LED strip was driven by the tiny MCU, and ran through the center of the tree, fading out through the branches. Another Trinket was tasked with controlling the 3D-printed tree topper’s animations. He also picked up an AC brick at a local thrift store, which handled all of the necessary power requirements for the 120 or so lights.

Trinket

What’s more, you’ll notice that Burhop selected a white tree, which proved to be the ideal backdrop for the flickering, addressable RGBs and colorful DIY ornaments. Trust us, you’ve got to see it in action.

 

This tool lets you create 3D printer filament at home


The Multistruder will turn plastic into filament for your 3D printer.


For most Makers, having to continually purchase 3D printing filament can be quite the expense. But what if, instead of having to purchase spools of PLA and ABS and wait for them to arrive, you could turn raw materials into 3D-printable filament right at home? This is the idea behind one San Jose-based startup’s open source and expandable fabrication tool called the Multistruder

the-green-engineers-develops-multistruder-3d-printing-tool-homemade-filament-production-5

Developed by The Green Engineers, Multistruder is a plastic extruder that transforms either virgin resin pellets or recycled scrap plastic into different shapes that can be used in your 3D printer.

With a little research, creator Steven Mosbrucker discovered that making your own 3D-printable materials from pellets is around 2.2 to 4.3 times less expensive than buying readymade filament. The greater quantities of pellets you buy, the cheaper it gets as well. Not to mention, using scrap plastic such as plastic bottles is totally free!

The Multistruder itself is made entirely out of rigid pipe, and sits upright to optimize space. It comes with a stand that can be mounted to a desk or hung from a wall, depending on a Maker’s preference.

9e5232ef149a83615dad4f0c5338eed4_original

In terms of hardware, the device is based on Arduino Uno (ATmega328) that provides its accuracy and expandability. With an Arduino for its brain, the unit is incredibly user-friendly and can be easily controlled via a TFT color touchscreen. Beyond that, the Multistruder’s drive motor control precisely handles the extrusion speed, capable of achieving speeds up to three feet per minute. Meaning, the tool can extrude a 1kg spool in less than eight hours.

Looking ahead, Mosbrucker and his team are developing an automated spooler expansion module for the Multistruder. This will automatically roll up the filament as it’s extruded onto a standard spool.

“The module will use motors controlled by the Multistruder Arduino board. The speed will be (manually) set to hold constant tension onto the filament to get more consistent filament diameter thus better performance,” Mosbrucker adds.

8dbf4fa22e02a3969b140634e9d680a8_original

An additional dimension control module will enable the Multistruder to even detect the diameter of the filament and automatically set the speed of the spooler motor to hold the tension for optimal results.

As its creators explain, “Instead of having a PID controller (which the prototype uses and a lot of other filament makers use) and buying a microcontroller for everything else, why not just have a Arduino do all of it?”

Are you looking to save money and cut out the middleman in the filament supply chain? Then head over to Multistruder’s Kickstarter campaign, where The Green Engineers team is currently seeking $6,000.

 

 

Hacking a 3D printer to play air hockey


This DIY project is puckin’ awesome!


As a kid, there was always that one game — besides Mortal Kombat, NBA Jam and Street Fighter, of course — that seemed to captivate everyone’s attention while inside an arcade. Air hockey! Originally invented by a group of Brunswick Billiards engineers back in 1969, the two-player game features a puck, two goals and a frictionless surface.

5529604a-4c04-4a8f-bce5-41a50ab66c53

However, there was always those times when you couldn’t find anyone else around to compete against. Fortunately, Maker Jose Julio recently decided to take it upon himself to alleviate that problem by creating an air hockey-playing robot using some readily available RepRap 3D printer parts, including an Arduino Mega (ATmega2560) and RAMPS 1.4 board.

Additional key specs included a PS3 camera, NEMA17 stepper motors, motor drivers, belts, bearings and rods, along with some 3D-printed brackets, paddles and pucks, obviously. Meanwhile, the table itself was built from scratch with off-the-shelf wood and two standard 90mm PC fans to produce the necessary air pressure to lift the puck.

Julio used a three-motor design (two for the Y-axis, one for the X), and replaced the X-axis rods on the RepRap with carbon tubes, which seemed to work quite well on PLA-printed bushings and made the system lighter.

mesa

“I started studying the code of Marlin (typical RepRap firmware) software but I decided to start from scratch, first because I don’t need a G-code interpreter, and second, because the software of a 3D printer have a motion planning algorithm and this is not the way the Air Hockey robot must work,” the Maker explains. “3D printers plan movements for smooth paths through all the points. The Air Hockey Robot should move inmediately with every new command canceling the previous one, because what we need is that the robot moves as quickly as possible to the new position.”

How the robot works is fairly straightforward. fThe system employs a PS3 camera mounted above the table to monitor the puck, determine its trajectory and stop shots from an opponent. The PS3 Eye is also adjustable, which allows a user to determine the robot’s speed, acceleration and strategy algorithms. (That’s good news for sore losers, you can rig the game to guarantee the win…) This was made possible by connecting the camera to a PC running a vision system that he wrote using OpenCV libraries. This way, once the puck is detected, the location is sent to the Arduino by serial port.

trajecroty

Beyond that, Julio devised a trajectory prediction system and the robot’s air hockey strategy with the Arduino.

“Once we have detected the puck in two consecutive frames we can calculate the trajectory. The trajectory prediction takes into account that the puck can rebound against a side wall. All these calculations are accesible to the strategy subsystem that decides what the robot will do: defense, defense+attack, and preparing for a new attack,” he writes.

Ready to get your game on against your own Air Hockey Robot? You can head over to the Maker’s official page here, while its code, 3D designs and additional documentation can all be found on Github here.