Category Archives: Touch Technology

Atmel adds force sensing to capacitive touch


Atmel’s new force sensing technology gives users more control through the pressure of their touch.


During CES 2016, Atmel showcased its next-generation force sensing technology in the latest maXTouch U series for smartphones. This new technology boasts 3D interactions for more intuitive control. Meaning, it enables a user to preview, zoom, play game, text and much more, simply by applying pressure to the screen with the touch of a finger.

Atmel’s force sensing technology can detect how much pressure a user applies to the screen and respond accordingly. For instance, a user can apply variable force to the glass on the touchscreen to activate various commands with their finger: slight pressure can be applied to the screen to select a gaming app and more pressure can be applied to start the game.

This biometric band can unlock your touchscreen device


Instead of passwords, what if your tablet authenticated you each time you touched the screen?


Having to continually enter passwords isn’t so convenient, especially when you’re in a rush. With hopes of putting an end to login prompts, two researchers have developed an innovative way of authentication for pretty much any touchscreen device. The brainchild of Christian Holz and Marius Knaust (who you may recall from their earlier project Bodyprint), Bioamp is a smart strap that uses a biometric sensor and a low data rate transmitter to access and protect content on tablets.

biometric_touch_sensing-bioamp-1

“From each touch, the touchscreen senses the 2D input coordinates and at the same time obtains biometric features that identify the user. Our approach makes authentication during interaction transparent to the user, yet ensures secure interaction at all times,” the duo explains.

To test their concept on today’s gadgets, they first created a watch-like prototype. Bioamp is equipped with several electrodes that sense the impedance profile of a wearer’s wrist and then modulate a signal to the body through their skin. From there, the touchscreen obtains the biometric data, identifies the particular user, and continuously grants permission for each interaction.

biometric_touch_sensing-notification-b

As Hackaday notes, Bioamp’s electrodes couple a 50V 150kHz signal through a wearer’s finger to the touchscreen, which picks up both the finger’s location via capacitive sensing and the background signal that’s transmitted by the bracelet. This background signal is modulated on and off, relaying the biometric data.

“Since Bioamp senses contact with skin, it is sufficient to collect biometric values initially and then ensure that the same user is wearing the device during further use. When Bioamp detects that the user has taken off the band, it stops transmitting signals, waits for the band to be put on again, and repeats the biometric measurements for subsequent modulation,” the duo writes.

biometric_touch_sensing-logins-d

The researchers integrated their approach into a Surface 2 Pro running Windows 8.1 to demonstrate various use cases, which include payment for app store purchases, authentication for emails and notifications, as well as temporary access for sharing photos. Additionally, Bioamp supports logins that require more than one person to be present at a time. For example, two users would need to touch a single login tile simultaneously in order to unlock and open sensitive emails.

In terms of hardware, Bioamp is driven by a Blend Micro. This board features an ATmega32U4 MCU and an nRF8001 BLE chip, which handles the wireless data transmissions to the tablet to compensate for low touchscreen sampling rates. Meanwhile, power is supplied by a pair of 110mAh LiPo batteries.

While some may argue that there are limitations to the design, this idea of making touch interaction convenient and secure is pretty darn cool. You can see it in action below, and be sure to read all about it in their research paper here.

Secured SAMA5D4 for industrial, fitness or IoT display


To target applications like home automation, surveillance camera, control panels for security, or industrial and residential gateways, high DMIPS computing is not enough.


The new SAMA5D4 expands the Atmel | SMART Cortex-A5-based family, adding a 720p resolution hardware video decoder to target Human Machine Interface (HMI), control panel and IoT applications when high performance display capability is required. Cortex-A5 offers raw performance of 945 DMIPS (@ 600 MHz) completed by ARM NEON 128-bit SIMD (single instruction, multiple data) DSP architecture extension. To target applications like home automation, surveillance camera, control panels for security, or industrial and residential gateways, high DMIPS computing is not enough. In order to really make a difference, on top of the hardware’s dedicated video decoder (H264, VP8, MPEG4), you need the most complete set of security features.

Life-Fitness-F3-Folding-Treadmill-with-GO-Console-2_681x800

Whether for home automation purpose or industrial HMI, you want your system to be safeguarded from hackers, and protect your investment against counterfeiting. You have the option to select 16-b DDR2 interface, or 32-b if you need better performance, but security is no longer just an option. Designing with Atmel | SMART SAMA5D4 will guarantee secure boot, including ARM Trust Zone, encrypted DDR bus, tamper detection pins and secure data storage. This MPU also integrates hardware encryption engines supporting AES (Advanced Encryption Standard)/3DES (Triple Data Encryption Standard), RSA (Rivest-Shamir-Adleman), ECC (Elliptic Curves Cryptography), as well as SHA (Secure Hash Algorithm) and TRNG (True Random Number Generator).

If you design fitness equipment, such as treadmills and exercise machines, you may be more sensitive to connectivity and user interface functions than to security elements — even if it’s important to feel safe in respect with counterfeiting. Connectivity includes gigabit and 10/100 Ethernet and up to two High-Speed USB ports (configurable as two hosts or one host and one device port) and one High Speed Inter-Chip Interface (HSIC) port, several SDIO/SD/MMC, dual CAN, etc. Because the SAMA5D4 is intended to support industrial, consumer or IoT applications requiring efficient display capabilities, it integrates LCD controllers with a graphics accelerator, resistive touchscreen controller, camera interface and the aforementioned 720p 30fps video decoder.

hmi-panels-sama5d4-atmel-processor

The MCU market is highly competitive, especially when you consider that most of the products are developed around the same ARM-based family of cores (from the Cortex-M to Cortex-A5 series). Performance is an important differentiation factor, and the SAMA5D4 is the highest performing MPUs in the Atmel ARM Cortex-A5 based MPU family, offering up to 945 DMIPS (@ 600 MHz) completed by DSP extension ARM NEON 128-bit SIMD (single instruction, multiple data). Using safety and security on top of performance to augment differentiation is certainly an efficient architecture choice. As you can see in the block diagram below, the part features the ARM TrustZone system-wide approach to security, completed by advanced security features to protect the application software from counterfeiting, like encrypted DDR bus, tamper detection pins and secure data storage. But that’s not enough. Fortunately, this microprocessor integrates hardware encryption engines supporting AES/3DES, RSA, ECC, as well as SHA and TRNG.

The SAMA5 series targets industrial or fitness applications where safety is a key differentiating factor. If security helps protecting the software asset and makes the system robust against hacking, safety directly protects the user. The user can be the woman on the treadmill, or the various machines connected to the display that SAMA5 MCU pilots. This series is equipped with functions that ease the implementation of safety standards like IEC61508, including a main crystal oscillator clock with failure detector, POR (power-on reset), independent watchdog timers, write protection register, etc.

Atmel-SMART-SAMA5D4-ARM-Cortex-MPU-AtmelThe SAMA5D4 is a medium-heavier processor and well suited for IoT, control panels, HMI, and the like, differentiating from other Atmel MCUs by the means of performance and security (not to mention, safety). The ARM Cortex-A5 based device delivers up to 945 DMIPS when running at 600 MHz, completed by DSP architecture extension ARM NEON 128-bit SIMD. The most important factor that sets the SAMA5D4 apart from the rest is probably its implemented security capabilities. These will protect OEM software investments from counterfeiting, user privacy against hacking, and its safety features make the SAMA5D4 ideal for industrial, fitness or IoT applications.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger as well as one of the four founding members of the site. This blog first appeared on SemiWiki on October 6, 2015.

Your touchscreen can now seamlessly transition between hover, finger and glove touch


The new maXTouch mXT641T family is the industry’s first auto-qualified self- and mutual-capacitance controller meeting the AEC-Q100 standards for high reliability in harsh environments.


Optimized for capacitive touchpads and touchscreens from five to 10 inches, Atmel has expanded its robust portfolio of automotive-qualified maXTouch controllers with the all-new mXT641T family. These devices are the industry’s first auto-qualified self- and mutual-capacitance controllers meeting the AEC-Q100 standards for high reliability in harsh environments.

Glo1

The maXTouch mXT641T family incorporates Atmel’s Adaptive Sensing technology to enable dynamic touch classification, a feature that automatically and intelligently switches between self- and mutual-capacitance sensing to provide users a seamless transition between a finger touch, hover or glove touch. As a result, this eliminates the need for users to manually enable ‘glove mode’ in the operating system to differentiate between hover and glove modes. Adaptive Sensing is also resistant to water and moisture and ensures superior touch performance even in these harsh conditions.

The latest family of devices support stringent automotive requirements including hover and glove support in moist and cold environments, thick lens for better impact resistance, and single-layer shieldless sensor designs in automotive center consoles, navigation systems, radio interfaces and rear-seat entertainment systems. The single-layer shieldless sensor design eliminates additional screen layers, delivering better light transparency resulting in lower power consumption along with an overall lower system cost for the manufacturer.

Glove

“More consumers are demanding high-performance touchscreens in their vehicles with capacitive touch technology,” said Rob Valiton, Senior Vice President and General Manager, Automotive, Memory and Secure Products Business Units. “Atmel is continuing to drive more innovative, next-generation touch technologies to the automotive market and our new family of automotive-qualified maXTouch T controllers is further testament to our leadership in this space. Atmel is the only automotive-qualified touch supplier with over two decades of experience in designing, developing, and manufacturing semiconductor solutions that meet the stringent quality and reliability standards for our automotive customers.”

Interested? Production quantities of the mXT641T are now available. Meanwhile, you can learn all about the entire maXTouch lineup here.

How to prevent execution surprises for Cortex-M7 MCU


We know the heavy weight linked with software development, in the 60% to 70% of the overall project cost.


The ARM Cortex-A series processor core (A57, A53) is well known in the high performance market segments, like application processing for smartphone, set-top-box and networking. If you look at the electronic market, you realize that multiple applications are cost sensitive and don’t need such high performance processor core. We may call it the embedded market, even if this definition is vague. The ARM Cortex-M family has been developed to address these numerous market segments, starting with the Cortex-M0 for lowest cost, the Cortex-M3 for best power/performance balance, and the Cortex-M4 for applications requiring digital signal processing (DSP) capabilities.

For the audio, voice control, object recognition, and complex sensor fusion of automotive and higher-end Internet of Things sensing, where complex algorithms for audio and video are needed for rich audio and visual capabilities, Cortex-M7 is required. ARM offers the processor core as well as the Tightly Coupled Memory (TCM) architecture, but ARM licensees like Atmel have to implement memories in such a way that the user can take full benefit from the M7 core to meet system performance and latency goals.

Figure 1. The TCM interface provides a single 64-bit instruction port and two 32-bit data ports.

The TCM interface provides a single 64-bit instruction port and two 32-bit data ports.

In a 65nm embedded Flash process device, the Cortex-M7 can achieve a 1500 CoreMark score while running at 300 MHz, offering top class DSP performance: double-precision floating-point unit and a double-issue instruction pipeline. But algorithms like FIR, FFT or Biquad need to run as deterministically as possible for real-time response or seamless audio and video performance. How do you best select and implement the memories needed to support such performance? If you choose Flash, this will require caching (as Flash is too slow) leading to cache miss risk. Whereas SRAM technology is a better choice since it can be easily embedded on-chip and permits random access at the speed of processor.

Peripheral data buffers implemented in general-purpose system SRAM are typically loaded by DMA transfers from system peripherals. The ability to load from a number of possible sources, however, raises the possibility of unnecessary delays and conflicts by multiple DMAs trying to access the memory at the same time. In a typical example, we might have three different entities vying for DMA access to the SRAM: the processor (64-bit access, requesting 128 bits for this example) and two separate peripheral DMA requests (DMA0 and DMA1, 32-bit access each). Atmel has get round this issue by organizing the SRAM into several banks as described in this picture:

Figure 2. By organizing the SRAM into banks, multiple DMA bursts can occur simultaneously with minimal latency.

By organizing the SRAM into banks, multiple DMA bursts can occur simultaneously with minimal latency.

For a chip maker designing microcontrollers, licensing ARM Cortex-M processor core provides numerous advantages. The very first is the ubiquity of the ARM core architecture, being adopted in multiple market segments to support variety of applications. If this chip maker wants to design-in a new customer, the probability that such OEM has already used ARM-based MCU is very high, and it’s very important for this OEM to be able to reuse existing code (we know the heavy weight linked with software development, in the 60% to 70% of the overall project cost). But this ubiquity generates a challenge: how do you differentiate from the competition when competitors can license exactly the same processor core?

Selecting a more aggressive technology node and providing better performance at lower cost are an option, but we understand that this advantage can disappear as soon as the competition also move to this node. Integrating larger amount of Flash is another option, which is very efficient if the product is designed on a technology that enables it to keep the pricing low enough.

If the chip maker has designed on an aggressive technology node for higher performance and offers a larger amount of Flash than the competition, it may be enough differentiation. Completing with the design of a smarter memory architecture unencumbered by cache misses, interrupts, context swaps, and other execution surprises that work against deterministic timing allow bringing strong differentiation.

Pic

If you want to more completely understand how Atmel has designed this SMART memory architecture for the Cortex-M7, I encourage you to read this white paper from Jacko Wilbrink and Lionel Perdigon entitled “Run Blazingly Fast Algorithms with Cortex-M7 Tightly Coupled Memories.” (You will have to register.) This paper describes MCUs integrating SRAM organized into four banks that can be used as general SRAM and for TCM, showing one example of a Cortex-M7 MCU being implemented in the Atmel | SMART SAM S70, SAM E70 and SAM V70/V71 families.


This post has been republished with permission from SemiWiki.com, where Eric Esteve is a principle blogger, as well as one of the four founding members of the site. This blog was originally shared on August 6, 2015.

The Sensel Morph is a next-gen, multi-touch input device


This pressure-sensitive, multi-touch input device will enable users to interact with the digital world like never before.


Despite all the advancements in technology, the keyboard and mouse have collectively withstood the test of time, remaining relatively unchanged for decades — until now. That’s because Mountain View, California startup Sensel is hoping to usher in a new generation of multi-touch interaction with an input device that they call the Morph.

58007c4aeaf1ecaddafdbfdba9e69a4f_original

Powered by the company’s patented Pressure Grid technology, the Morph will let users interact with computers and programs in a whole new way. While on the surface it may appear to look like an ordinary trackpad, it is far from that. Inside lies approximately 20,000 sensors (or “sensels”) that can detect and measure the force of even the slightest touch. And given that it’s not a capacitive touch device, it doesn’t require a human to press on its outer force-sensing material. Instead, any object ranging from a paintbrush to a drumstick will do the trick.

c8747240b8afea5489d8bea1d88ca194_original

“Unlike other touch technologies, which can only sense conductive objects, each of the sensor elements in our device senses pressure with a high dynamic range. These sensors allow us to capture a high-resolution image of the pressure applied to the device. Highly tuned algorithms on the device take these pressure images and turn them into a list of touch locations, each with their own force and shape information,” its creators write.

What’s nice is that the Morph works right out of the box with an assortment of applications, and is even hackable for the tech-savvy bunch. Simply connect it to your computer via USB, to your iPad over Bluetooth, or to your Atmel powered Arduino with developer cables, and you’re good to go.

831980e7ec08c19c823512be3bb06803_original

As its name would imply, the unit can literally “morph” depending upon your activities throughout the day. This is achieved with the help of magnetic, fully customizable overlays (each shipment will come with three) that are placed over the gadget and instantly provide a visual “map” for each mode’s unique functionality. Backers can choose from a QWERTY keyboard, a music production controller, a piano, a drum pad, a game console, an art overlay, as well as one more to be decided by the Kickstarter community.

What’s more, Sensel has introduced an “innovator’s” overlay, which gives the Maker crowd the ability to design, print and use their own custom interfaces. And as if that wasn’t enough, you can actually combine multiple devices to amplify the awesomeness. For example, you can put four Morphs together to make an instrument with 96 keys.

7ab982bb9080e4fde7f01fa48f8e9800_original

“Imagine having your art tablet, music production controller, QWERTY keyboard, piano, video game controller (and anything else your mind can fathom) all in one device. If you can imagine something so limitless without your brain imploding, you’ve imagined the Sensel Morph,” the team explains.

With the Morph, you will also be able to create new, custom interfaces. The Sensel crew is developing a web-based drag-and-drop interface that will go live when the first batch of devices ship. With this interface, you will be able to devise your own overlay without having to do any coding. As for the developers out there, Sensel’s open source API will enable you to integrate the propietary technology into your own applications. The Morph is compatible with Windows, Mac, Linux, iOS and Arduino.

“Our mission from the start was to address the mismatch between the expressive capabilities of our hands and the restrictive interfaces of today’s devices,” the folks at Sensel add. “We want to enable new ways of interaction with digital devices and allow Morph users to unleash new possibilities in the worlds of music, art, gaming (cue Buzz Lightyear), and beyond!”

c2c47e27452fe390e35e274d0c26439c_original

Housed inside the iPad-sized device’s aluminum casing and beneath its super thin, force-sensing material lies a patented electrical drive scheme and circuitry, which includes a microprocessor, an accelerometer, LEDs, Bluetooth LE support, a rechargeable battery and a microUSB port.

Ready to interact with your digital world like never before? Head over to the Morph’s Kickstarter campaign, where Sensel is currently seeking $60,000. Delivery is slated for next summer.