This three-axis motion sensor gyroscope is based on an Arduino Pro Mini

Maker Martin Cote has developed a three-axis motion sensor gyroscope that enables you to track head or arm movement, then reproduce it on servos. 

Initially conceived for head-tracking FPV goggles, Martin Cote has created a three-axis motion sensor gyroscope based on an Arduino Pro Mini (ATmega328). Applicable in a wide range of settings, users can track the movement of the head or arm, and replicate it on a set of servos.


Available in two different versions, both wired (Iota) and wireless (Z-ita), the gyroscope is ideal for Makers seeking an inexpensive head-tracking system yet are not comfortable with the advanced programming of accelerometers. Sample use cases include robotics, remote-controlled toys, gaming and interfacing with computers.


First, Iota provides users with the ability to control mini servos that reproduce movement on three axes, as well as reverse the direction of the servos to act as a stabilizer. Measuring just 1” x 3″ in size, the super small and lightweight unit can be easily integrated into any project. Meanwhile, Z-ita does pretty much the same thing but wirelessly within a range of 30 to 50. This set comes with the Ita receiver, which transmits the signals to the servos, as well as a battery capable of lasting of over two hours. What’s more, it offers a selection of 16 channels at the frequency of 2.4Ghz, and allows more than one to be used at a time.


“You want to use the accelerometer signals to another type of application? Get the Iota or Z-ita set and plug it into your Arduino MCU according to the video and use the sketch file provided (which you can adapt to your needs), and look for new possibilities to suit your needs.”

Interested? Head over to Kickstarter page, where Cote has already well exceeded his initial goal of $408. Shipment is expected to begin in October 2015. 

3 thoughts on “This three-axis motion sensor gyroscope is based on an Arduino Pro Mini

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s