This 3D printer is made of LEGO bricks

Don’t let its appearance fool you, this LEGO machine will work just as good as any Prusa i3 printer.

Reminiscing about your earliest years as a Maker will surely conjure up some memories of interlocking multi-colored plastic bricks. Since its debut in 1949, LEGO has remained synonymous with DIY, especially for the younger crowd. As of late, we have been seeing quite the convergence of the 3D printing and toy worlds, ranging from Disney to Mattel, with hopes of delivering customizable items on demand. And who’s to say that it only has to be for child’s play? One Maker has proven just that by devising a fully-functional 3D printer comprised of, well, LEGO pieces.


The brainchild of Gosse Adema, the so-called LEGO 3D Printer is based on the framework of a Prusa i3 printer. Originally conceived as an A4-plotter with stepper motors from an old HP printer, the Maker had decided to upgrade to Nema 17 stepper motors and transform it into a slick X, Y and Z axis machine.

Though a quick online search may reveal a number of LEGO-based 3D gizmos, none of them may be as impressive as this one. Made up of default-sized bricks (four by two studs at 32mm x 16mm x 9.6mm), this innovative contraption is capable of extruding plastic like any other desktop device. The printer boasts a base of 34 x 64 studs (19.2cm x 51.2cm), which determines the exact location of the Y axis, along with a height of 44 blocks (42cm) and a sturdy L-frame that’s 36 blocks tall. This, of course, dictates how high a printed object can be.


Keep in mind, as with any LEGO project, the taller the structure, the more unstable the frame becomes. For support, the Maker ensured that every fifth piece was a technic brick. And unlike the X axis of a Prusa i3 consisting of a separate left and right side connected by two rods, Adema instead implemented one large X axis using long technic bricks for enhanced stability. Beyond that, Nema 17 steppers are attached to the technics using a felt damper/isolator and M3x15 bolts, giving it a robust base.

Adema makes it known that he did not use any Mindstorms product for this build. Whereas most LEGO printers employ servos, this design worked quite nicely with stepper motors. As with any Prusa i3, this device was powered by the incredibly popular combination of an ATmega2560 MCU with a RAMPS 1.4 shield. The motor responsible for driving the entire operation is held in place with technic bricks at the back. In terms of software, the gadget uses Marlin for the ATmega2560, while running Pronterface on his laptop to control the printer.


In his Instructables post, Adema explains in great detail as to how he assembled the frame, completed the X, Y and Z axes, added each of the three endstops, attached the threaded rod and installed the Geeetech MK8 extruder. What’s more, the heat bed is capable of reaching 110° C, while the printhead starts at 170° C. The Maker notes that prior to installing the Marlin software, a few changes to the printer and its configuration were necessary.

“My first print had some problems with the amount of filament but everything worked. The main problem was the difference in filament settings and extruder nozzle. This was caused by the Pronterface settings,” the Maker writes. “This resulted in feeding too few filament. Next error was the default nozzle size is 0.5 mm with a layer height of 0.4 mm. The actual nozzle is 0.3 mm.”

This simply meant that he had to adjust the settings a tad, aside from calibrating some of its parts.


“Although the printer needs to be further calibrated everything is working properly,” Adema concludes. “By ensuring that all axes move smoothly, no steps are skipped by the stepper motors. This was one of the problems during the first print.”

As with any LEGO project, having the ability to modify the gadget after it’s constructed is certainly an advantage. While it may look like a toy at first glance, this 3D printer can actually create some credible 3D models. Sound like a unit you’d love to try? Head over to the Maker’s elaborate tutorial on Instructables here, or watch it in action below!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s