Video: Vegard Wollan talks AVR and ARM low-power operation

In this segment of the series, the co-inventor of the AVR microcontroller chip talks about the famously low power that the chips consume.

I had heard that one of the clever things Atmel does to save memory power is that we turn on the memory, fetch four instruction op-codes then turn the memory off again. Now, if there is a branch in these four op-codes that change the program flow, well, we have to turn on the memory and grab another four instructions. But, you can imagine just how often that the chips are executing all for instructions, so that we get those four op codes for the power cost of one fetch.

Vegard-Wollan_joking

Vegard Wollan jokes will fellow Norwegian Andreas Eieland [off camera] about divulging the secrets to Atmel’s ultra-low power.

Vegard confirmed that Atmel does this on both the latest AVR and on our Atmel | SMART ARM-based chips. I love this clip since this is where we break the 4th wall as Vegard jokes to the crew that I am giving away too many secrets. I also confirmed that some of our ARM chips have a switching regulator controller built in. For instance, the SAM4L has one switching and one linear regulator built in. Now we don’t put any giant inductors inside the chip, you supply the external inductor, but all the control circuitry is available so you can really minimize the BOM (bill-of-materials).

SAM4L-Switching-regulator

To allow single-supply operation the ARM-based SAM4L microcontroller has a switching regulator on board, you only need to supply an external inductor.

This is yet another thing that differentiates our ARM-core parts from the competition. Most engineers know how cool and revolutionary the AVR was, but we have applied all the “cool” and more to our ARM-based chips. As Vegard noted, we have many tricks and innovations to sip the lowest amount of power, and that includes having our own processes at our Colorado Springs fabrication facility.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s