Robots for the people

As a child of the ’80s, I don’t think there was anything cooler than Transformers, MASK and few of the other TV series featuring some kind of robots. My problem, and I guess I wasn’t the only one, back then was access to robot kits. Yes, we had some building kits — of both plastic and metal with cogwheels, axles and rubber bands — but it didn’t quite get our creations to behave the way we hoped or imagined.

We at Trondheim Makers, an organization in Trondheim, Norway who works with the local Maker scene and Maker Faire Trondheim in August, have a little project that we are set to release — the super cheap and simple foam board Robot Kit.

Drawing

Simply stated, it is a cheap, easy-to-build robot and easy-to-hack kit based on a four-legged, two-servo walking robot found in many variations on the Internet.

first_test_robot

Given that our goal is to devise a simple and easy-to-build robot, there is no need for CNC machines, 3D printer or other soon-to-be household machines. Since the body is made out of foam board, it can simply be cut out with a carpet knife. The legs are made out of two pieces of steel wire, with a little drop of glue at the ends to provide better traction.

One micro servo for each pair of legs provides not the most elegant or gracious walking, but it certainly has some sort of interesting walking characteristics. An Atmel Xplained Mini Board with a super simple code controls all of this. We have installed the Arduino bootloader onto the boards, so it is even easier for those who would like to try out their own codes. A rangefinder enables the robot to move backward and make turns when approaching an obstacle — or a photo resistor so it starts walking when the lights are turned on (and totally freaks out your fiancée) — are easily added to both the board and code.

Robotv2

A 9V battery, through a 5V regulator, powers the robot since the servos are not that happy about 3.3V. Subsequently, there is both 3.3V through the onboard regulator on the Xplained and 5v through the external regulator.

Our other goal was to offer an affordable kit. With a total cost of +/- $20, it comes in at around the same price as a burger meal at a typical fast food restaurant here in Norway.

robot

The R&D time spent on this project is neglectable. The robot, which works out-of-the-box when put together, walks forward and doesn’t stop or turn. We hope that as soon as we begin to give these kits away, people will start experimenting — try out other codes, bend the legs in different angles, add sensors and so forth.

By doing this, we hope to inspire and show children of all ages (including big boys and girls with daytime jobs), how simple it is to build a fun, homemade toy that you could experiment, hack and modify, all while hopefully learning a thing or two along the way.

robotkit

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s