Jianan Li and a team of Makers recently designed a wireless MIDI floor piano for Duke University’s Hackathon. According to the Hackaday crew, a DIY Pressure Plate for a haunted Halloween house featured on the popular website served as the initial inspiration for the wireless MIDI floor piano.
“Having only 24 hours to compete in the Hackathon, they had to choose something that was fairly easy to build out of cheap materials, and quick to assemble. This was just the ticket,” explained Hackaday’s James Hobson.
“The piano features 25 of the aluminum foil pressure plates, whose state are read by the [Atmel-based] Arduino Mega. This is then transmitted by an XBee radio to an Arduino Uno (ATmega328), which acts as the receiver for the laptop that processes the signals. They even added a remote control using Atmel’s ATtiny85 to allow for octave and instrument changes – it uses an XBee to communicate back to the Uno.”
Unsurprisingly, the above-mentioned pressure-sensitive wireless floor project isn’t the first that we’ve seen powered by Atmel microcontrollers (MCUs). Indeed, earlier this year, Sean Voisen and his team at Adobe were asked to build “something new” for the Children’s Creativity Museum in San Francisco.
By August, a digital-physical environment for kids called “Sense It” was up and running. With a 14′x8′ touch-enabled LED wall and a 14′x12′ pressure-sensitive floor, the platform can best be described as a place for kids to run, jump, play and create in a world of ‘extra large’ digital experiences. Sense It is built around a system of pressure-sensitive resistors placed under MDF panels, comprising a total of twenty-one 2′x4′ tiles, each one including 8 pressure-sensitive resistors and an ATtiny84 based platform.
Interested in learning more? Additional information about SenseIt can be found here, while the wireless MIDI floor piano project page is available here.
Cool my little sister actually been teaching me Piano!
LikeLike
Pingback: Constructing a musical staircase with the ATmega32u4 | Bits & Pieces from the Embedded Design World