Motor control with AVR MCUs

Microcontrollers (MCUs) are becoming more and more common for motor control applications as they replace Application-Specific Standard Products (ASSP) and ASICs. Simply put, MCUs are equipped with embedded peripherals – thereby offering considerable flexibility while reducing costs.

Typical applications for motor control MCUs – such as Atmel’s extensive AVR lineup – include compressors and fans in refrigerators, fans in cooker hoods, as well as drums and pumps in washing machines.

“Atmel AVR MCUs are particularly well suited for motor control applications. First off, Flash memory provides flexibility that enables developers to use the same microcontroller for multiple applications, all while easily upgrading the program during an application’s lifetime,” an Atmel engineering rep told Bits and Pieces.

“Secondly, code compatibility allows engineers to port existing development to other Atmel AVR microcontrollers based on new application requirements. Thirdly, the extended family of Atmel 8-bit AVR microcontrollers helps engineers choose a perfect fit for a specific application, while keeping costs under control. And lastly, dedicated peripherals such as high-end PWM modules and ADC are ideal for motor control applications.”

Numerous motors  can be appropriately paired with Atmel AVR MCUs, including a three-phase BLDC, two-phase BLDC, asynchronous AC and stepper.

Interested in learning more? Additional information about using Atmel AVR MCUs for various motor control applications is available here.

1 thought on “Motor control with AVR MCUs

  1. Pingback: Putting Atmel AVR MCUs in your refrigerator | Bits & Pieces from the Embedded Design World

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s